

DYNAMO DATA MANAGEMENT OVERVIEW

Steve Williams and Jim Moore National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) Boulder, Colorado, USA

CINDY2011/DYNAMO Operations Planning Workshop JAMSTEC, Yokohama, Japan 8-10 November 2010

http://www.eol.ucar.edu/projects/dynamo

News

Integration of DYNAMO Observations and Models *(White Paper)* CINDY 2011/DYNAMO Operation Planning Workshop **November 8-10, 2010 Yokohama, Japan**

Report from the Site Survey to the Maldives (February 2010) (download PDF version) 🏸

Photo Album survey trip(part 1) Photo Album survey trip(part 2) Panoramic photos of all Gan radar sites

DYNAMO Scientific Program Overview and Experimental Design Overview documents submitted to NSF (Jan 13, 2010).

Project Overview

There is considerable evidence for the importance of the MJO in weather and climate (e.g., hurricane activity, U.S. West Coast flooding events, and ENSO), and in their seamless prediction. But our ability of simulating and predicting the MJO is severely limited due to model misrepresentation of processes

key to the MJO. Development, improvement, validation of parameterizations for weather and climate models critically

rely on in situ observations. A lack of in situ observations in the region of the tropical Indian Ocean has impeded the progress on the study of MJO, especially its initiation. All these point to an urgent need of a field observation campaign in the tropical Indian Ocean region with a focus on the MJO and tropical intraseasonal variability in general.

The US research, operations and applications communities are poised to join CINDY2011, an international field program that will take place in the central equatorial Indian Ocean in late 2011 - early 2012 to collect in situ observations to advance our understanding of MJO initiation processes and to improve MJO prediction. DYNAMO is the program that organizes the US interest of partaking in CINDY2011. The DYNAMO campaign will be augmented by other field programs (AMIE, HARIMAU, PAC3E-SA, ONR air-sea interaction) also taking place in late 2011 - early 2012. The integrated observation data set from these programs will cover MJO events at different stages of their life cycle with complimentary observational emphases. The opportunity to be an integrated part of these coordinated programs to maximize the value of observational products makes the timing of late 2011 early 2012 critical for DYNAMO.

The field campaign of DYNAMO/CINDY2011 consists mainly of a sounding-radar array formed by research

Meetings and Presentations Introduction to DYWAMO presentation Organization and Working Groups Science Steering Committee Modeling Working Group Ship Working Group Gan Island Working Group Documents Integration of DYNAMO Observations and Models (White Paper) DYNAMO Overview "White Paper" (June 2009) DYNAMO timeline

Meetings and Presentations

Scientific Program Overview Experiment Design Overview Related Projects

```
Year of Tropical Convection (YOTC)
CINDY-2011
US CLIVAR MJO Working Group
NOAA CPC MJO Forecast
ARM Tropical Western Pacific
India Meteorological Department web site
HARIMAU
RAMA
MISMO Project
```

Participant Web Sites

Mailing Lists

DYNAMO General List Modeling Working Group

hold

Contents:

- Project Overview
- Meetings and Presentations
- Working Groups
- Documents
- Related Projects
- Participant web pages
- Mailing Lists
- Data Management
- Contacts

EOL Data Management Philosophy

- Early involvement in project planning
- Involvement with PIs to develop data management strategy (e.g., plan, policy, format, special collection and processing)
- Consistent implementation of data management strategy for lifetime of project and beyond (data Stewardship)
- Reliable and efficient long-term archive and distribution system
- Easy and efficient access to datasets by broader community including educators and students

Project Data Management Considerations

- Develop Data Management Plan
- Data Types
- Data Formats and Documentation
- Data Collection
- Define Real-time Data Requirements
- Data Quality Control
- Data Archival
- Data Distribution
- Coordination with other Programs

DYNAMO Data Flow (proposed)

Distributed

DYNAMO Data Policy and Protocol

See: http://www.eol.ucar.edu/projects/dynamo/documents/data_policy.html

The DYNAMO data policy is in compliance with the World Meteorological Organization (WMO) Resolution 40 on the policy and practice for the exchange of meteorological and related data and products including guidelines on relationships in commercial meteorological activities:

"As a fundamental principle of the World Meteorological Organization (WMO), and in consonance with the expanding requirements for its scientific and technical expertise, the WMO commits itself to broadening and enhancing the free and unrestricted international exchange of meteorological and related data and products."

DYNAMO Data Management Strategy

See: http://www.eol.ucar.edu/projects/dynamo/documents/data_policy.html

A DYNAMO Data (field observations and associated satellite data, reanalyses, and model output) **Archive Center (DDAC)** will be established and maintained by NCAR Earth Observing Laboratory (EOL) [proposed].

A real-time web-based **Field Catalog will be implemented by EOL** [proposed] to assist the planning and field operation with an overview of the missions carried out during the field campaign. All participants to the DYNAMO field campaign are required to communicate with EOL on a daily basis to report status of their real-time data collection and instruments, which will be included in the Field Catalog. Real time atmospheric sounding observations will be made available to operational centers through GTS (with near real-time Skew-T plots provided in the Field Catalog).

There will be a **CINDY2011 data center at JAMSTEC**. The CINDY2011 data center and DYNAMO DDAC will be linked and the accessibility to publically released data at either center will be transparent to users.

Possible formation of a joint Data Management Working Group (DMWG)?

Data Management Working Group (DMWG) "Typical" Charge

(Reports to the Scientific Steering Committee)

- Coordinate with the Project Participants to define the data requirements
- Design a distributed data management system to provide access to all data sets
- Prepare a data management plan describing the data policy, strategy, and implementation
- Determine special product generation or data integration needs
- Oversee data collection to ensure a permanent archive upon completion of the program
- Coordinate and collaborate with other field projects/programs and data providers

DYNAMO Data Submission and Availability

See: http://www.eol.ucar.edu/projects/dynamo/documents/data_policy.html

Within six months following the end of the field campaign, all data shall be promptly shared by DYNAMO investigators responsible for data acquisition to other DYNAMO investigators upon request and notification of the intent of data use.

All DYNAMO investigators participating in the field campaign are required to **submit their field data** to the DDAC no later than **six months** following the end of the field campaign.

During the **first 12 months** following the end of the field campaign, all DYNAMO data will be **accessible only to DYNAMO investigators** to facilitate inter-comparison, quality control checks and inter-calibrations, as well as an integrated interpretation of the combined data set. **No public release** of the data (sharing with non-DYNAMO colleagues, conference presentations, publications, commercial and media use, etc.) is allowed without the permission of the DYNAMO PIs who are responsible for collecting the data.

Quality control procedures should be carried out by DYNAMO investigators within 12 months following the end of the field campaign, unless unforeseeable issues emerge. After that, DYNAMO field data will be made available to the broader scientific community. Any remaining data quality issues should be made clear in the data documentation files. Improving DYNAMO data quality will be a continuous effort. The suitability of the released data for scientific investigations and publications should be decided at the discretion of the DYNAMO investigators responsible for field data collection and quality control and data users.

DYNAMO Data Authorship and Acknowledgement

See: http://www.eol.ucar.edu/projects/dynamo/documents/data_policy.html

The authorship decision for publications resulting from using DYNAMO data should follow the ethic rules of the journals and professional organizations (e.g., AMS, AGU). DYNAMO investigators responsible for field data collection are encouraged to make contributions to data analysis and writing of manuscripts, in addition to providing the data, to be **co-authors or acknowledged in the publications** using DYNAMO data.

All publications using DYNAMO data are suggested to include the following acknowledgement: The xxxx data was collected as part of the DYNAMO project, which was sponsored by NSF, NOAA, ONR, DOE, NASA, JAMSTEC, [Indian and Australian funding agencies]. The involvement of the DDAC is acknowledged. [The acquisition of the xxx data was carried out by YYYY using the zzzz instrument and was funded by wwww (if YYYY is not a co-author)].

DYNAMO Data Management Timeline (proposed)

EOL DATA SERVICES

- Data Questionnaire
- Data Management Plans
- Real-time Data Ingest
- Field Operations Catalog and Mapserver
- Data Processing
- Interactive Data Archive and Distribution (EMDAC)
- Web Services
- Special Media Products and Services

http://survey.ucar.edu/opinio/s?s=3634

	VOCALS Data Questionnaire
	Average Cloud Atmosphere Lange Part
The \ requir Catal out th	/OCALS Data Questionnaire is intended to collect information from the VOCALS PIs on their data rements. This includes the requirements for real-time image products for the VOCALS Field og and the data sets required for the Long-Term Data Archive to support your research. Please fill ie form as completely as possible.
The F and d	Field Catalog will be the repository for products and documentation during the field phase. All data locumentation coming from VOCALS will reside in the Long-Term Data Archive.
	CONTACT INFORMATION
1.	Name:
2	Affiliation
2.	
з.	Mailing Address.
4.	E-mail:
5.	Telephone:
Б	Fax
	Next
	Powered by Opinio

INFORMATION COLLECTED ON:

- Imagery and products needed for the field catalog (real-time ingest)
- Supporting Datasets needed for research
- PI Data to be submitted to the field catalog/archive
- Product transfer to aircraft
- Special products/reports/datasets needed

DATA CATEGORIES

Aircraft	Upper Air
Satellite	Oceanographic
Land-based	Model Output
Radar/Lidar	Other

DYNAMO DATA MANAGEMENT PLAN OUTLINE (Proposed)

1.0 Introduction/Background

1.1 Project Scientific Objectives

1.2 Data Management Philosophy/Strategy

1.3 Data Management Working Group

2.0 Data Management Policy

2.1 Data Protocol

2.2 Data Processing/Quality Control

2.3 Data Availability

2.4 Data Attribution

2.5 Community Access to Data

3.0 Data Management Functional Strategy/Description

3.1 Data Archive and Analysis Centers

3.2 Investigator Requirements

3.2.1 Data Format Conventions

3.2.2 Data Submission Requirements

3.3 Data Collection Schedule

3.3.1 On-line Field Catalog

3.4 Data Processing following the Field Phase

- 3.5 Data Archival and Long-term Access
 - 3.5.1 Distributed Archive Procedures
- 3.6 Data Integration

4.0 Project Data Sets

- 4.1 Data Collection/Processing
- 4.2 Status Update Procedures
- 4.3 In-field Data Display and
 - Analysis Requirements
- 4.4 Coordination with other Programs
- 4.5 Education and Outreach

APPENDICES

A. Research Data SetsB. Operational Data Sets

C. List of Acronyms (LOA)

EOL FIELD CATALOG TOOL

In-field tool to ingest and display operational and preliminary research data and project documentation for making real-time decisions and evaluating project progress

Features:

- Daily Mission Reports
- Operations Summary
- Facility Status Reports
- Data Analysis Products
- Authoring Tools
- Web-based access
- Password Protection capability

FIELD CATALOG REPORTS

Date (UTC	DLR Falcon status	Driftsonde status	NRL P-3 status	USAF C130 plan of the day	dlr falcon mission summary	driftsonde operations	facilities status summary	forecast brief	forecast graphic	nrl p-3 mission summary	ops plan of the day	usaf c130 mission summary	weather model verification	weather summary	weather targeting blog		
2008/09/3	0		00:09 23:41				<u>22:43</u>	<u>22:29</u>	<u>22:29</u>		00:03		<u>20:44</u>	<u>19:53 21:29</u> <u>23:00</u>	<u>14:51</u> <u>15:53</u>		
2008/09/2	9	<u>10:00 22:00</u>			<u>03:50</u> 22:20		<u>22:51</u>	<u>22:38</u>	<u>22:39</u>		<u>00:07</u>		<u>20:36</u>	<u>20:48</u>	<u>15:14</u> <u>15:40</u>		
2008/09/2	8 23:07	<u>10:00 22:00</u>	<u>00:55</u> 23:15		<u>03:10</u>		<u>22:00</u>	<u>22:43</u> 22:47	22:41 22:43 22:46		<u>00:33</u>		<u>21:36</u>	<u>20:50 23:00</u>	<u>13:22</u> 20:55		
2008/09/2	7	10:00 22:00	00:11 06:05				22:57	22:11 22:34 22:56	22:12 22:35 23:00		00:02	<u>02:08</u>	<u>20:56</u>	21:15 23:00	<u>13:29</u> <u>20:53</u>		
2008/09/2	6 23:30	10:00 22:00	00:20	<u>04:15</u>			<u>21:10</u>	22:26 22: 5 FA	22:30	ATUS					11:37		
2008/09/2	2008/09/25 07:37 10:00 22:00 10:18 07:06						<u>22:14</u>	<u>22::</u> 22::	= up; =	= provisional;	= down ;	= no report					
2 200 180		PREDICT			172.9		22:36	<u>21:</u> 22:	NRL P 1. hrs: 6.8+ 8. EL b. Of c. Dr	3 (Remaining fl ·) .DORA Radar NR Wind Lidar ropsonde Syst	ight :em	Comment Comment Comment Comment	t: AC problem on a Oct., last flight da t: operating at redu t: t:	airplane, availab ay 5 Oct. uced sensitivity	ble on 2		
160 2 140	NCAR	GV Flight Hour Ut	ilization				<u>22:48</u>	<u>22::</u> 23::	d. Da e. Co	ata System ommunication:	s	Comment Comment	t: t:				
2 SINOH 120 100 80						-Total Hours	2 <u>2:20</u> Used	<u>19:</u>	19: a. Dropsonde System b. Data System			Comment Comment Comment	Comment: Flight operations completed Comment:				
60 40									c. Co d. Ra e. AX	ommunication adar Recording (BT System	s g	Comment Comment Comment	t: t: t:				
0	15-Aug-10 17-Aug-10 19-Aug-10 21-Aug-10	23-Aug-10 25-Aug-10 27-Aug-10 31-Aug-10 31-Aug-10 2-Sep-10	4-Sep-10 6-Sep-10 8-Sep-10 10-Sep-10	12-Sep-10 14-Sep-10 16-Sep-10	16-569-10 20-569-10 24-569-10 26-569-10 28-569-10	30-5ep-10			DLR(D- 3. flight hrs a. Wa b. Do c. Dr	CMET) Falcon : 10.5) ater Vapor Lid oppler Wind Li opsonde Syst	(Remair ar dar em	^{ing} Comment Comment Comment Comment	t: Aircraft is operat Oct. t: t: t:	tional, last flight	day 3		

ND

FIELD CATALOG SAMPLE PRODUCTS

WSI NOWRAD MOSAIC 08 JUN 1998 0

SCC-BSIR FIELD CATALOG

OM SCHOOLE SUPPORT - COLUMNEDO - USA

UCAR - HOUST

1.5

FIELD CATALOG OPERATIONAL PRODUCTS

Droduct											10	Se	o 20	08											
Times(UTC)		01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	2
MTSAT (CIMSS TPARC Sa	tellit	te Im	i 🔍	ry ar	nd P	rodi	ucts)					-		•		-	-	•	-	-	•		· •	-	
200_700_layer_mean_wind	0000			0300			0600			0900			1200			1500			1800			2100			22
250_850_layer_mean_wind	0000			0300			0600			0900			1200			1500			1800			2100	İ	<u> </u>	22
300_850_layer_mean_wind	0000			0300			0600			0900			1200			1500			1800			2100			20
400_850_layer_mean_wind	0000			0300			0600			0900			1200			1500			1800			2100			20
500_850_layer_mean_wind	0000			0300			0600			0900			1200			1500			1800			2100			22
700_850_layer_mean_wind	0000			0300			0600			0900			1200			1500			1800			2100			22
850_mb_vorticity	0000			0300			0600			0900			1200			1500			1800			2100			20
lower_level_convergence	0000			0300			0600			0900			1200			1500			1800			2100			20
sat_winds_200strml	0057	0157	0257	0357	0457	0513	0657	0757	0857	0957	1057	1113	1257	1357	1457	1557	1657	1713	1857	1957	2057	2157	2257	2313	20
sat_winds_200vort	0057	0157	0257	0357	0457	0513	0657	0757	0857	0957	1057	1113	1257	1357	1457	1557	1657	1713	1857	1957	2057	2157	2257	2313	22
sat_winds_500vort	0057	0157	0257	0357	0457	0513	0657	0757	0857	0957	1057	1113	1257	1357	1457	1557	1657	1713	1857	1957	2057	2157	2257	2313	22
sat_winds_700vort	0057	0157	0257	0357	0457	0513	0657	0757	0857	0957	1057	1113	1257	1357	1457	1557	1657	1713	1857	1957	2057	2157	2257	2313	2
sat_winds_850vort	0057	0157	0257	0357	0457	0513	0657	0757	0857	0957	1057	1113	1257	1357	1457	1557	1657	1713	1857	1957	2057	2157	2257	2313	2
sat_winds_conv	0057	0157	0257	0357	0457	0513	0657	0757	0857	090	100			l go	bes−10	2008	3/10/	15 13	:45 U	TC gi	ian e	n1 Co	pyrig	ht(c)	NCA
sat_winds_deep_shr	0057	0157	0257	0357	0457	0513	0657	0757	0857	09(Z								135					
sat_winds_dvg	0057	0157	0257	0357	0457	0513	0657	0757	0857	09(a total									1. 14 M					
sat_winds_hi	0057	0157	0257	0357	0457	0513	0657	0757	0857	09(201			N-ST	and the second	1	
sat_winds_low	0057	0157	0257	0357	0457	0513	0657	0757	0857	09(24		6.6		5					
sat_winds_mid_shr	0057	0157	0257	0357	0457	0513	0657	0757	0857	09(A and			and a	-	TE.		ALC: NO	1 Star	
shear_tendency	0000			0300			0600			090						大部	No.	A	and and				and a		
upper_level_divergence	0000			0300			0600			090		1				1		Ser.		1 43	-				
wavetrak	0000			0300			0600			090					ě,		3	Tan	DUL				Sai		
wind_shear	0000			0300			0600			090					Sec. 4	-	the me	AL AL	X	Dr.			Charles .		
winds_IR	0000			0300			0600			090	ines.			18			S. S.	Ra	22			No.		- ANNA	
winds_WV	0000			0300			0600			090					E.	1			1	2			XX		
MTSAT_GOES											A.C.			-	5ª	1	3.1		A at	- m	3	Sanble	al 1 x	- Al	
composite_IR	0030	0130	0230	0330	0430	0530	0630	0730	0830	093			1.9	12	1.1	the second	1 p	-			r.	and a	TAR	1 and	
composite_WV		0130	0230	0330	0430	0530		0730	0830	093	1						1	X			-		à.		

FIELD CATALOG MODEL OUTPUT

							Glo	bal Er	nsemble	e Foreca	ast Proe	ducts									
Forecast	19 Aug 2010	20 Au	g 2010	21 Au	ig 2010	22 Au	g 2010) 23 Ai	ug 201(24 Au	g 2010	25 Au	g 2010	26 Au	g 2010	27 Au	g 2010	28 Au	g 2010	29 Aug 201	0
Times(UTC)	12	00	12	00	12	00	12	00	12	00	12	00	12	00	12	00	12	00	12	00	
SECMWF - Ana	alysis and For	ecast	from 2	010/08	19 00:	00 UT	<mark>Ċ</mark> (DLF	RECM	WF Pro	ducts)											
ENS_circ_thick	012hr	024hr	036hr	048hr	060hr	072hr	084hr	096hr	108hr	120hr	132hr	144hr	156hr	168hr	180hr	192hr	204hr	216hr	228hr	240hr	20
ENS_div	012hr	024hr	036hr	048hr	060hr	072hr	084hr	096hr	108hr	120hr	132hr	144hr	156hr	168hr	180hr	192hr	204hr	216hr	228hr	240hr	2
ENS_pdf	012hr	024hr	036hr	048hr	060hr	072hr	084hr	096hr	108hr	120hr				İ			İ		i		2
ENS_rh	012hr	024hr	036hr	048hr	060hr	072hr	084hr	096hr	108hr	120hr	132hr	144hr	156hr	168hr	180hr	192hr	204hr	216hr	228hr	240hr	22
ENS_shear	012hr	024hr	036hr	048hr	060hr	072hr	084hr	096hr	108hr	120hr	132hr	144hr	156hr	168hr	180hr	192hr	204hr	216hr	228hr	240hr	22
ENS_vort_700	012hr	024hr	036hr	048hr	060hr	072hr	084hr	096hr	108hr	120hr	132hr	144hr	156hr	168hr	180hr	192hr	204hr	216hr	228hr	240hr	20
ENS_vort_850	012hr	024hr	036hr	048hr	060hr	072hr	084hr	096hr	108hr	120hr	132hr	144hr	156hr	168hr	180hr	192hr	204hr	216hr	228hr	240hr	20
NCEP - Analy	/sis and Forec	ast fr	om 201	0/08/1	9 00:00	UTC													· · · ·		
ENS_circ_thick	012hr	024hr	036hr	048hr	060hr	072hr	084hr	096hr	108hr	120hr	132hr	144hr	156hr	168hr	180hr	192hr	204hr	216hr	228hr	240hr	22
ENS_div	012hr	024hr	036hr	048hr	060hr	072hr	084hr	096hr	108hr	120hr	132hr	144hr	156hr	168hr	180hr	192hr	204hr	216hr	228hr	240hr	22
ENS_pdf	012hr	024hr	036hr	048hr	060hr	072hr	084hr	850 mb t	i emp (C) haht	i (m) wind (m/s	i)	i 24 hou	i r Eta valid 12	ZFRI1AUG	i 03_300 mb	i vspd (knt) hq	i ht (m) wind (i	i m/s)	i i 24 ho	our Eta valid 12Z FRI	AUG 03
ENS_rh	012hr	024hr	036hr	048hr	060hr	072hr	084hr		4.0 ±0			2mg		Jan b					17 <u>~</u>	10	
ENS_shear	012hr	024hr	036hr	048hr	060hr	072hr	084hr				1017		$\mathcal{M}(\mathbb{C})$	KAT					100		
ENS_vort_700	012hr	024hr	036hr	048hr	060hr	072hr	084hr		DEA		- A		and the	K.			- A			Jacob K	1/3
ENS_vort_850	012hr	024hr	036hr	048hr	060hr	072hr	084hr	1.17	18			LS)	2.A	\$ / :		(1 All	
												1 and	J-J				$\langle \cdot \rangle$		alt of	ALC L	
							NF	ROC	a la	Vr -		Arit		γ			and the				1.1
	Forecast	19	Aug 2	010	20 A	ug 20	10	2				44	E	$\left(\begin{array}{c} \end{array} \right)$		123				TEX (1)	- f.
T	imes(UTC)	00	06 12	2 18	00 00	6 12	18 0	00			N.	and a					5111				D T
<u>⊠NO</u>	GAPS - Analy	/sis a	nd For	ecast	from 2	010/0	<u>8/19 0</u>	0			<u> </u>	$X_{i} > 0$							Lill		D N
500m	b_Vorticity	000hr	006hr 012	hr 018hr	024hr 030)hr 036hr	042hr 04	18		1.22.		1711	1. A 1. T	<u> </u>		<u>e 11 1</u>				<u>/ 155</u>	$\sim r$
700m	b_Vorticity	000hr	006hr 012	hr 018hr	024hr 030)hr 036hr	042hr 04	20 40 60 Surface p	ao 10 12 14 rec (în) pres	18 18 20 22 24 mb) thick (m)	26 28 30	24 hou	r Eta valid 12	Z FRI 1 AUG	03 850-500	20 30) mb mrhum (40 50 8 %)lift4(dC)	0 70 80	24 h	www.vectore our Eta valid 12Z FRI	0.5 m/a → AUG 03
850-2	200mb Shear	000hr	006hr 012	hr 018hr	024hr 030)hr 036hr	042hr 04	18 <mark>0.748</mark>		XX	6		\mathbf{x}					5		the second second	
850-5	500mb Shear	000hr	006hr 012	hr 018hr	024hr 030)hr 036hr	042hr 04	HB odda	+		₩ (5 /	577		<u>a a</u>	H Z	
850m	b Vorticitv	000hr	006hr 012	hr 018hr	024hr 030)hr 036hr	042hr 04	18		102				Q.		$\leq q$	J. M			-0.575 -055	1
950m	b Vorticity	000hr	006hr 012	hr 018hr	024hr 030) hr 036hr	042hr 04	18	- 6	11/8	- the - the				<u> </u>	(later	20	And Service			
MSLE	>	000hr	006hr 012	hr 018hr	024hr 030)hr 036hr	042hr 04		<u>له</u>	1013									-		
	GAPS - Analy	eis a	nd For	ecast	from 2	010/0	R/19 1	2	$\cap \mathbb{V}$	N the f	k (ko	2				-Man H	(in the second		-582	- U /	
500m	b Vorticity			MODEN	01252 049	br 024br	0305-03	8	\geq			AL	aller -		L'	SIN	1×	0			V.
700~	b Vorticity		000	h ooet -	0421-040		000					Seller B	H				Ja	2	-0.	H	4
000	NORPH Share		000	11 000 hr	01201018	02461	0301103		\square		4					\sim	-520		(n)	445	-
850-2	200mb_Shear		000	nr UUBhr	012hr 018	nr U24hr	030hr 03	·······			000 CCC		UI- 110 L A-1						+220	-720 00 0	Nisys
850-5	Shear		000	hr 006hr	012hr 018	hr 024hr	030hr 03	3 6		75 4 15 7				004.0 H: US			0 60 70 -	80 90 100			HI. 1810
1860m	n Vorticity	1 I	1000	INTOORNEL	04257048	thrl024hrl	IOBO MIOS	85-I0421	ліодеьтіо	545-JOBO5-	10665707	257I0785	1084570	альноавь	ol4025d4	085711148	vI42057I4	28hd 132	hrl138hrl1	44hr 99	

FIELD CATALOG MISSIONS TABLE

Flight	Date	Operations Area	Catalog Products	Flight Summary	Notes
RF01	Oct 15	SHOA/DART buoy	<u>Operational</u> <u>Model</u> <u>Research</u> <u>GOES-10 KML</u>	<u>Summary</u>	Shakedown/reconnaissance mission with near-complete payload to SHOA/DART buoy. Mission structure of the Cross-Section flight type with additional deep profile to 20000ft out of Arica.
RF02	Oct 18	20 South	<u>Operational</u> <u>Model</u> <u>Research</u> <u>GOES-10 KML</u>	Summary Evaluation 1 Evaluation 2 Run Table Photos	First VOCALS POC-drift mission, successfully demonstrating POC and 20S patterns and steering of C130 from ops center using xchat to an interesting daytime cloud transition on satellite from closed to open cells, with essentially no drizzle and relatively high droplet concentrations throughout.
RF03	Oct 21	20 South	<u>Operational</u> <u>Model</u> <u>Research</u> <u>GOES-10 KML</u>	Summary Evaluation 1 Evaluation 2 Run Table Photos	First VOCALS 20S Cross-Section Mission, successfully transiting to the IMET Buoy at 20S, 85W, and back at low level, with runs below, in, and above cloud, and profiles to 10000 ft.
RF04	Oct 23	20 South	<u>Operational</u> <u>Model</u> <u>Research</u> <u>GOES-10 KML</u>	Summary Evaluation Run Table Photos	20S Cross Section Mission. Clear example of gradients in ST cloud microphysics and aerosol properties between point Alpha(-20S, 72W) and Buoy(-20S,85W) along with intercomparison flight with the G1 above, in and below clouds on the return leg from point Alpha to Arica.
RF05	Oct 25	20 South	Operational Model Research GOES-10 KML	Summary Evaluation Run Table Photos	20S mission, including first overflight of Brown, in Cu under Sc with solid polluted single-layer Sc near the coast and drizzle shafts and low droplet concentrations further offshore.
RF06	Oct 28	POC	<u>Operational</u> <u>Model</u> <u>Research</u> <u>GOES-10 KML</u>	Summary Evaluation Photos	Second VOCALS POC-drift mission, but first across a mature POC-overcast boundary.
RF07	Oct 31	POC	<u>Operational</u> <u>Model</u> <u>Research</u> <u>GOES-10 KML</u>	Summary Run Table Evaluation	POC Mission along 80W between 20S and 23S followed by intercomparison with BAe146 en-route to point Alpha(-20S, 72W). POC formed recently in last 10 hours or so and was growing and spreading to north during flight legs so should be good example of early POC evolution.
RF08	Nov 2	POC	<u>Operational</u> <u>Model</u> <u>Research</u>	Summary Run Table	POC flight across a pronounced microphysical boundary between a polluted Sc tongue and a very clean airmass with precipitating cumuliform cells, with low-level transits through a polluted solid Sc layer to Arica and a Brown

FIELD CATALOG RESEARCH PRODUCTS

http://catalog.eol.ucar.edu/tparc/

- Reports/Summaries (Status, Mission, and Operations) 1028 documents and 2486 image files (0.62 GB)
- Research Platform Products (Aircraft, Surface, Lidar, Upper Air) 5,210 image files (0.89 GB)
- Operational Products (Satellite, Surface, Radar, Upper Air) 114,632 image files (27 GB)
- Model Output Imagery (Analysis and Forecast Fields) 1,014,180 image files (60 GB)
- TOTALS: 1,137,536 Files (88.51 GB)

EOL Metadata Database And Cyberinfrastructure (EMDAC)

PROJECT MASTER LISTS

🕹 T-REX Data Access - Mozilla I	Firefox		-3	
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks	Tools Help			200
💠 • 🔶 🕑 🔂 🔒 🎚	🕑 💥 🍺 📴 📑 http://data.eol.ucar.edu/master_list/?project=T-REX	II island alaska articles		Q
ᅄ CNN.com 🌞 UCAR/NCAR E-mail an	d 😢 NOAA Staff Directory 🗋 AT&T Directory: Direc 💿 Colorado Weather 💿 Weather and Climate F 💿 NCAR/EOL/CDS/DM Pr 💿 Forecast Models 💿 National Weather Imag			
🔉 T-REX Data Access 🛛 🚨	VIntitled Document 💿 🕒 Friday Photo			3
Train Indexed Bark Experiment	T-REX Data Sets 🚱			-
I-Kex	Data Set Name (Responsible Group/PIs shown in parentheses)	Date Posted	Info	
DATA BY CATEGORY				
Aircraft	Aircraft			
Ancillary	NCAR IDV Elight Track Imagery	2007-03-07		
 Land Based 				
 Land Characterization 				
• Model	Aircraft: NSF/NCAR GV	7		
Photography	NCAR GV (HIAPER) Dropsonde Profile Data (EOL Format) [NCAR/EOL]	2006-10-04	READ ME	
Kadar Satellite	NCAR GV (HIAPER) Dropsonde Profile Data (ESC Format) [NCAR/FOL]	2006-10-31	READ	
• Upper Air		2000-10-01		
	NCAR GV (HIAPER) HRT Differential GPS Data [NCAR/EOL]	2007-04-26	READ	
Back to T-REX	NCAR GV (HIAPER) HRT Flight-Level Data [NCAR/EOL]	2007-03-20	READ	
Email comments &	NCAR GV (HIAPER) In-Situ Ozone Data [NCAR/ACD]	2006-08-24	READ	
webmaster@eol.ucar.edu	NCAR GV (HIAPER) Left Side Camera Video [NCAR/EOL]	Updated 2007-02-06	READ	
	NCAR GV (HIAPER) LRT (1 sps) Flight-Level Data [NCAR/EOL]	Updated 2006-12 <i>-</i> 01	READ ME	
	Aircraft: UK BAE-146			
	UK BAE-146 Dropsonde Profile Data (ESC format) [UK Met Office]	2006-10-31	READ	
	UK BAE-146 Navigation, State Parameter, Microphysics, Aerosol, and Chemistry Data [UK Met Office]	Updated 2006-11-29	READ	١
Done				

PROJECT PUBLICATIONS LIBRARY

EPIC Publication References

(How to Submit Publication References to this List)

Convection Research (Cruise Leg 1): Publications, Conference Proceedings

Stratocumulus Research (Cruise Leg 2): Publications, Conference Proceedings

Other Citation Links

Convection Research - Cruise Leg 1

Publications - Convection Research A-D, E-H, I-L, M-P, Q-T, U-Z

Back to Top

- <u>Cifelli, R., S.W. Nesbitt, W.A. Petersen, S.A. Rutledge, S. Yuter (2007), Radar Characteristics of Precipitation Features in the EPIC and TEPPS Regions of the East Pacific, Monthly Weather Review, 135, 1576-1595.</u>
- Cronin, M. F., N. A. Bond, C. W. Fairall, and R.A. Weller, 2006: Surface Cloud Forcing in the East Pacific Stratus Deck/Cold Tongue/ITCZ complex. J. Climate, 19, 392-409.
- o Cronin, M. F., N. Bond, C. Fairall, J. Hare, M. J. McPhaden, R. A. Weller, 7 May 2002: Enhanced Oceanic and Atmospheric Monitoring Underway in Eastern Pacific. EOS, Transactions, AGU, 83(19), pages 205, 210-211.
- <u>Cronin, M. F., C. W. Fairall, and M. J. McPhaden, 2006: An assessment of buoy-derived and numerical weather prediction surface heat fluxes in the tropical Pacific. J. Geophys. Res., 111, C06038, doi:10.1029/2005JC003324.</u>
- o Cronin, M. F., S.-P. Xie, and H. Hashizume, 2003: Barometric Pressure Variations Associated with Eastern Pacific Tropical Instability Waves. J. Climate, 16, 3050-3057.
- o de Szoeke, S. P., C. S. Bretherton. Quasi-Lagrangian Large eddy Simulations of Cross-Equatorial Flow in the East Pacific Atmospheric Boundary Layer. J. Atmos. Sci., 61, 1837-1858.
- de Szoeke, S. P., C. S. Bretherton, 2005: Variability in the Southerly Flow into the Eastern Pacific ITCZ. J. Atmos. Sci., 62, 4400-4411.
- o de Szoeke, S. P., C. S. Bretherton, N. A. Bond, M. F. Cronin, B. M. Morley, 2005: EPIC 95W Observations of the Eastern Pacific Atmospheric Boundary Layer from the Cold Tongue to the ITCZ. J.