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1. Introduction and Summary ﬂ Data

v" Introduction & subject of this study * R/V Mirai was deployed at 8°S, 80.5°E
*  We examine influence of cumulus convective activity on surface meteorological variables and in Sep. 30 — Oct. 24 and Oct. 30 — Nov. 28 (~52 days)
air-sea heat fluxes observed by R/V Mirai during the CINDY2011/DYNAMO campaign. * Data used: i .
. . . . . - Surface meteorological observations:
* Special focus on wind speed changes, and relationship between measures of the influence and Surface wind (u,), temperature (T,), humidity (q,), SW, LW, SST
convective activity. 1-min resolution, with 11-min running mean applied
v Summary - Surface sensible and latent heat fluxes (SHF, LHF) estimated with
COARES3.0 bulk flux algorithm (Fairall et al. 1996, 2003).

« Since most of the observed convections after October 12 were sporadic and sub-MCS
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¢ We identify 13 cases with olnly one surface air temperature (T,) drop, and 9 cases with two T, R(r km) : Estimated rainfall over a circle with r-km radius.
drops occurring subsequently. Cov(r km) : Fractional area covered with ="
¢ Characteristics in T, surface humidity (q,), and wind speed (|u¢|) changes are consistent with radar echo (>15 dBZ) in a circle with r-km radius. N
results in previous studies. - Radiosonde sounding: horizontal wind profile (u), 3 hourly &=
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» Decomposition of |ug change into its parallel and rectangular components with respect to Ug in * Southeasterly surface wind (~5 m s™!) environment i g
the pre-convective period reveals that the quick termination is due to the parallel component. * Characteristics of convective activity et n e nmonasmanw
¢ We try to find evidence of convective momentum transport. ¢ Before Oct. 12: Mesoscale convective system (MCS) = [ 1 TF T Jm®
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«  Minimum T, and difference of maximum |uy| from |ug| in the pre-convective period are more events > Composite of 4 MCSs (Section 8). )
representative of the magnitude of the influence than difference of minimum T, from T, in the e After Oct. 12: Sub-MCS-scale convective systems. S g
pre-convective period and maximum |uy| itself. - It’s easy to identify start and end of influence of R _
*  We compare variability in the single and double events and that in MCS-scale events in early individual convective systems (Sections 4-7). gz e W H :§
October. Figure 2. Time series of (red) SHF and (green) LHF, and (blue) Cov(50km). g “ :: ;
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Six Periods: The termination of the enhancement of |ug| is primarily
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A: pre-convective (1hr) caused by Ug,, which is negative in the inter-convective Figure 5. The same as Fig. 4, except for (a) Uy, and (b) |ug, |
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Sharp d f T, and d enh: f Figure 7. Time-vertical section of U,
arp drops of T, and g, and enhancement of [uy]. « Since convection tends to mix the momentum s

* T, and g, are recovered gradually, while the enhancement of |u| vertically, Uy, averaged over the course of the events is period, with vectors indicating Uy,. 2 . b
terminates quickly. expected to be negative. . et

¢ Resultantly, SHF and LHF increase during the active period. « However, the averaged Uy, is negative for only 13 out é 0

« Note that anomalies are generally greater in successive active of 22 events (slightly more than the half (11)) (Fig. 8). Figure 8. Scatter plot of (u;, Uy,) e

averaged over the course of individual

period than in primary active period of the double events. * Note that we should consider how Uy, becomes negative. events (convectively active, inter- :
convective, and recovery periods). Blue 3 . N .
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Figure 4. Composite for single (blue) and double (red) events. (a) Skin sea surface temperature ¢ The measures of the influence are tightly related to radar 2
QSST) and T,, (b) saturated specific humidity at SSST and g,, (c) |ug) (d) SHE, and (¢) LHF. / signals only near the observation point (within 10 km distance). 2w
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=  post-MCS (10hr) to the single and double events. Figure 9. (a) Scatter plot of Ty, Versus |Ugy—|Us| for individual active periods. (b) Correlation
» o coefficients of radar-estimated variables [Cov(r km) (solid) and R(r km) (broken)] with ~Toyy;,
Figure 10. The same as in Fig. 4, (thick) and Ugyg,—IUgg| (thin). Horizontal axis represents r [km]. (c) The same as in (a), except for
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