Correction for the Meisei RS-06G Radiosonde data obtained at the Indonesia BMKG sites

Kunio Yoneyama (JAMSTEC), Nelly Florida Riama, and Nurhayati (BMKG)

Introduction

During the extended observing period of the 2011-12 MJO field campaign, highresolution (1 sec interval during the ascent) radiosonde sounding data were taken at the 13 stations of the Indonesian Meteorological, Climatological and Geophysical Agency (BMKG). In particular, 12 of their stations adopt Japanese Meisei RS-06G radiosonde system. Since it is essential to obtain high accurate data for analyses, quality control of those data has been carried out. For this purpose, we performed the correction to the following components; 1) time-lag error at lower temperatures, 2) dry bias due to solar-radiation during daytime sounding based on the simultaneous sounding comparison with cryogenic frost-point hygrometer, 3) discontinuity of relative humidity at 0 ° C level due to insufficient correction scheme, 4) significantly heated/cooled values near the surface affected by surrounding obstacles, and 5) unrealistic noisy data and no-wind data caused by the wrong operation.

Table 1. Radiosonde observation summary.

	OCT	NOV	DEC	JAN	FEB	MAR	TOTAL	lat	lon	Stn. No.	Code	Туре	
MEDAN	61	60	62	62	58	61	364	3.56N	98.67E	96035	WIMM	Meisei	RS-06G
PADANG	60	59	124	62	57	59	421	0.88S	100.35E	96163	WMG	Meisei	RS-06G
PANGKAL PINANG	19	51	59	58	52	57	296	2.16S	106.14E	96237	WIKK	Meisei	RS-08G
CENKARENG	56	57	62	61	58	62	356	6.12S	106.68E	96749	WII	Meisei	RS-06G
RANA	62	57	62	62	58	0	301	3.91N	108.39E	96147	WION	Modern	M2K2DC
SURABAYA	62	60	62	61	58	62	365	7.37S	112.78E	96935	WRSJ	Meisei	RS-06G
MAKASSAR	60	55	61	55	52	53	336	5.06S	119.53E	97180	WAAA	Meisei	RS-06G
PALU	62	60	62	62	58	62	366	0.92S	119.91E	97072	WAML	Meisei	RS-06G
KUPANG	60	59	56	59	56	59	349	10,18S	123.67E	97372	WRKK	Meisei	RS-06G
MANADO	60	60	62	62	58	59	361	1.54N	124.92E	97014	WAMM	Meisel	RS-06G
AMBON	59	60	62	62	58	62	363	3,715	128.10E	97724	WAPP	Meisei	RS-08G
BIAK	57	59	56	58	57	60	347	1.195	136.10E	97560	WABB	Meisei	RS-06G
MERAUKE	61	60	62	61	58	62	364	8.52S	140.41E	97980	WAKK	Meisei	RS-06G
	739	757	852	785	738	718	4589						

Operation

Sounding operation is well organized.
However, a few problems have been noticed.
1) Sensor was exposed to the sunshine for a while prior to launch. It may cause sensor-arm heating.
2) Calibration sensors for ground check were broken at some sites. (Thus, no adjustment was performed. Actually, WMO recommends not to perform ground check, if instruments/technical supports are insufficient.)
3) While SYNOP data are used for PTU as surface

a) While SYNOP data are used for PTO as surface values, wind data manually measured are used. Some operators seem to enter "zero", when wind is weak regardless of actual speed/direction.

Fig. 3. Intercomparison among CFH, Vaisala RS92, and Meisei RS-06G. Observations were carried out onboard the R/V Mirai. At this moment, 13 CFH data are available for comparison (11 in daytime/ 2 in nighttime).

Fig. 4. Time-constant for Meisei RS-06G. Data were provided by Meisei. Right panel shows the results of time-lag correction (light blue).

Temp (degC)

Note. Above 300hPa, influence from the sensor package is removed by software

$\Delta RH = -18 (In P)^5 + 541 (In P)^4 - 6417 (In P)^3 + 37926 (In P)^2 - 111683 (In P) + 130960$

Fig. 6. Comparison between the RH profiles of CFH and Meisei sonde. Correction profile is obtained by applying a polynomial fitting to the mean profile.

Discontinuity of RH at 0 °C level

$RH_{cor} = RH_{obs} - (2.86 - 0.168 \text{ x T} - 0.00202 \text{ x T}^2)$

where T in temperature (°C), RH_{obs} is observed value, and RH_{cor} is corrected one.

To reduce the error related to temperature dependence of the RH sensor, above correction is applied ONLY to the range of "- 40 °C \leq T \leq 0 °C". Thus, current Meisei sonde data always contain a gap at 0 °C. Recently, Sugidachi & Fujiwara (2013, JMSJ) noticed this fact, and proposed to expand the range from 0 °C to 14.5 °C, where Δ RH=0, based on the chamber experiment.

Influence from surrounding conditions

Fig. 8. Examples of near surface profiles of temperature (red) and relative humidity (blue) obtained at Padang. Marks with diamond/triangle indicate corrected values by extrapolating above layer. Heating/dry and cooling/wet conditions can be found during daytime and nighttime.