5.11 Surface meteorological observations

```
(1) Personnel (*: Leg-1, **: Leg-2, ***: Leg-1+2)
```

Kunio YONEYAMA*	(JAMSTEC)	- Principal Investigator (Leg-1)
Masaki KATSUMATA***	(JAMSTEC)	- Principal Investigator (Leg-2)
Souichiro SUEYOSHI***	(GODI)	- Operation Leader (Leg-1 and 2)
Asuka DOI***	(GODI)	
Toshimitsu GOTO ***	(GODI)	
Katsuaki MAENO*	(GODI)	
Ryo KIMURA*	(GODI)	
Satoshi OKUMURA**	(GODI)	
Kazuho YOSHIDA**	(GODI)	
Wataru TOKUNAGA***	(MIRAI Crev	v)

(2) Objectives

Surface meteorological parameters are observed as a basic dataset of the meteorology. These parameters provide the temporal variation of the meteorological condition surrounding the ship.

(3) Methods

Surface meteorological parameters were observed by two systems as follows.

1) MIRAI Surface Meteorological observation (SMet) system

Instruments of SMet system are listed in Table 5.11-1 and measured parameters are listed in Table 5.11-2. Data were collected and processed by KOAC-7800 weather data processor made by Koshin-Denki, Japan. The data set consists of 6 second averaged data.

2) Shipboard Oceanographic and Atmospheric Radiation (SOAR) measurement system

SOAR system designed by BNL (Brookhaven National Laboratory, USA) consists of major five parts.

- a) Portable Radiation Package (PRP) designed by BNL short and long wave downward radiation.
- b) Zeno Meteorological (Zeno/Met) system designed by BNL wind, air temperature, relative humidity, pressure, and rainfall measurement.
- c) "SeaSnake" the floating thermistor designed by BNL skin sea surface temperature (SSST) measurement.
- d) ISAR (Infrared Sea Surface Temperature Autonomous Radiometer) developed by SOES (Southampton Oceanographic Centre) and BNL SSST measurement
- e) Scientific Computer System (SCS) developed by NOAA (National Oceanic and Atmospheric Administration, USA) centralized data acquisition and logging of all data sets.

SCS recorded PRP data every 6 seconds, Zeno/Met data every 10 seconds and SeaSnake data every 2 seconds. ISAR data was recorded by another PC, every 5 seconds (raw data) and every 10 minutes (averaged data). Instruments and their locations are listed in Table 5.11-3 and measured parameters are listed in Table 5.11-4.

SeaSnake equipped two thermistor probes. Output voltage was converted to SSST by Steinhart-Hart equation with following coefficients led from the calibration data. See (6) Remarks for the deployed period for each sensors.

Sensor	a	b	с
T01-005 Sensor:	7.97710e-04	-2.13236e-04	-6.70279e-08
T01-100 Sensor:	8.10896e-04	-2.11366e-04	-7.29166e-08
T03-005 Sensor:	7.97750e-04	-2.13058e-04	-6.84900e-08
T03-100 Sensor:	8.04777e-04	-2.12133e-04	-7.11043e-08

y = a + b * x + c * x**3, x = log (1 / ((Vref / V - 1) * R2 - R1)) T = 1 / y - 273.15

Vref = 2500[mV], R1= $249000[\Omega]$, R2= $1000[\Omega]$ T: Temperature [degC], V: Sensor output voltage [mV]

For the quality control as post processing, we checked the following sensors, before and after the cruise.

- Young Rain gauge (SMet and SOAR) Inspect of the linearity of output value from the rain gauge sensor to change Input value by adding fixed quantity of test water.
- ii. Barometer (SMet and SOAR) Comparison with the portable barometer value, PTB220, VAISALA
- iii. Thermometer (air temperature and relative humidity) (SMet and SOAR) Comparison with the portable thermometer value, HMP41/45, VAISALA
- iv. SeaSnake SSST

SeaSnake thermistor probe was calibrated by the bath equipped with SBE-3 plus, Sea-Bird Electronics, Inc.

v. ISAR SSST

ISAR sensor (infrared radiometer) was calibrated by CASOTS bath. Reference temperature of the bath was measured by 4-wire thermistor (AS125, GE Sensing).

(4) Preliminary results

Figure 5.11-1 shows time series of the following parameters;

Wind (SMet) Air temperature and SST (SOAR and SMet) Relative humidity (SOAR) Precipitation (SOAR, rain gauge) Short/long wave radiation (SOAR) Pressure (SMet) Sea surface temperature (SMet) Significant wave height (SMet)

Figure 5.11-2 shows time series of SSST and SST.

(5) Data archives

These meteorological data will be submitted to the Data Management Group (DMG) of JAMSTEC just

after the cruise.

(6) Remarks (Times in UTC)

- The observation was carried out within following periods, Leg1: 12:00 25th Sep. 2011 to 00:00 26th Oct. 2011 Leg2: 00:00 29th Oct. 2011 to 03:00 1st Dec. 2011
- 2) The following periods, SeaSnake SSST data is available. [T01-005 & T01-100 sensor] 04:53 30th Sep. 2011 to 06:38 24th Oct. 2011 05:09 31st Oct. 2011 to 11:29 13th Nov. 2011 11:35 13th Nov. 2011 to 03:55 14th Nov. 2011 04:46 14th Nov. 2011 to 00:59 15th Nov. 2011 [T03-005 & T03-100 sensor] 01:48 15th Nov. 2011 to 03:55 29th Nov. 2011
- 3) The following periods, ISAR observation was suspended.
 12:00 25th Sep. 2011 to 03:23 26th Sep. 2011
 04:03 20th Oct. 2011 to 16:27 20th Oct. 2011
- 4) The following periods, SOAR wind direction (relative and true) data is not available due to sensor trouble.

05:51 13th Nov. 2011 to 06:33 13th Nov. 2011

Sensors	Туре	Manufacturer	Location (altitude from surface)
Anemometer	KE-500	Koshin Denki, Japan	foremast (24 m)
Tair/RH	HMP45A	Vaisala, Finland with	
43408 Gill aspirated ra	diation shield	R.M. Young, USA	compass deck (21 m)
			starboard side and port side
Thermometer: SST	RFN1-0	Koshin Denki, Japan	4th deck (-1m, inlet -5m)
Barometer	Model-370	Setra System, USA	captain deck (13 m)
			weather observation room
Rain gauge	50202	R. M. Young, USA	compass deck (19 m)
Optical rain gauge	ORG-815DR	Osi, USA	compass deck (19 m)
Radiometer (short wav	e)MS-802	Eiko Seiki, Japan	radar mast (28 m)
Radiometer (long wave	e) MS-202	Eiko Seiki, Japan	radar mast (28 m)
Wave height meter	MW-2	Tsurumi-seiki, Japan	bow (10 m)

Table 5.11-1: Instruments and installation locations of MIRAI Surface Meteorological observation system

Table 5.11-2: Parameters of MIRAI Surface Meteorological observation system

1 Latitudedegree2 Longitudedegree3 Ship's speedknotMirai log, DS-30 Furuno	
3 Ship's speed knot Mirai log, DS-30 Furuno	
4 Ship's heading degree Mirai gyro, TG-6000, Tokimec	
5 Relative wind speed m/s 6sec./10min. averaged	
6 Relative wind direction degree 6sec./10min. averaged	
7 True wind speed m/s 6sec./10min. averaged	
8 True wind direction degree 6sec./10min. averaged	
9 Barometric pressure hPa adjusted to sea surface level	
6sec. averaged	
10 Air temperature (starboard side) degC 6sec. averaged	
11 Air temperature (port side)degC6sec. averaged	
12 Dewpoint temperature (starboard side) degC6sec. averaged	
13 Dewpoint temperature (port side) degC 6sec. averaged	
14 Relative humidity (starboard side)%6sec. averaged	
15 Relative humidity (port side)%6sec. averaged	
16 Sea surface temperaturedegC6sec. averaged	
17 Rain rate (optical rain gauge) mm/hr hourly accumulation	
18 Rain rate (capacitive rain gauge) mm/hr hourly accumulation	
19 Down welling shortwave radiation W/m^2 6sec. averaged	
20 Down welling infra-red radiation W/m^2 6sec. averaged	
21 Significant wave height (bow) m hourly	
22 Significant wave height (aft) m hourly	
23 Significant wave period (bow) second hourly	
24 Significant wave period (aft) second hourly	

Sensors (Zeno/Met)	Туре	Manufacturer	Location (altitude from surface)
Anemometer	05106	R.M. Young, USA	foremast (25 m)
Tair/RH	HMP45A	Vaisala, Finland	
with 43408 Gill aspirate	ed radiation shie	eld	
		R.M. Young, USA	foremast (23 m)
Barometer	61202V	R.M. Young, USA	
with 61002 Gill pressur	e port	R.M. Young, USA	foremast (23 m)
Rain gauge	50202	R.M. Young, USA	foremast (24 m)
Optical rain gauge	ORG-815DA	Osi, USA	foremast (24 m)
Sensors (PRP)	Туре	Manufacturer	Location (altitude from surface)
Radiometer (short wave	e)PSP	Epply Labs, USA	foremast (25 m)
Radiometer (long wave) PIR	Epply Labs, USA	foremast (25 m)
Fast rotating shadowbar	nd radiometer	Yankee, USA	foremast (25 m)
Sensors (SeaSnake)	Туре	Manufacturer	Location (altitude from surface)
Thermistor	107 Camp	bell Scientific, USA	bow, 5m extension (0 m)
	-		
Sensors (ISAR)		Manufacturer	Location (altitude from surface)
ISAR		RMR, USA	foremast (24 m)
		-	· · · ·

Table 5.11-3: Instruments and installation locations of SOAR system

Parameter	Units	Remarks
1 Latitude	degree	
2 Longitude	degree	
3 SOG	knot	
4 COG	degree	
5 Relative wind speed	m/s	
6 Relative wind direction	degree	
7 Barometric pressure	hPa	
8 Air temperature	degC	
9 Relative humidity	%	
10 Rain rate (optical rain gauge)	mm/hr	

 W/m^2

 W/m^2

mV

degC

degC

11 Precipitation (capacitive rain gauge) mm

13 Down welling infra-red radiation

14 Defuse irradiance

17 SSST (ISAR)

15 "SeaSnake" raw data 16 SSST (SeaSnake)

12 Down welling shortwave radiation W/m^2

Table 5.11-4: Parameters of SOAR system

reset at 50 mm

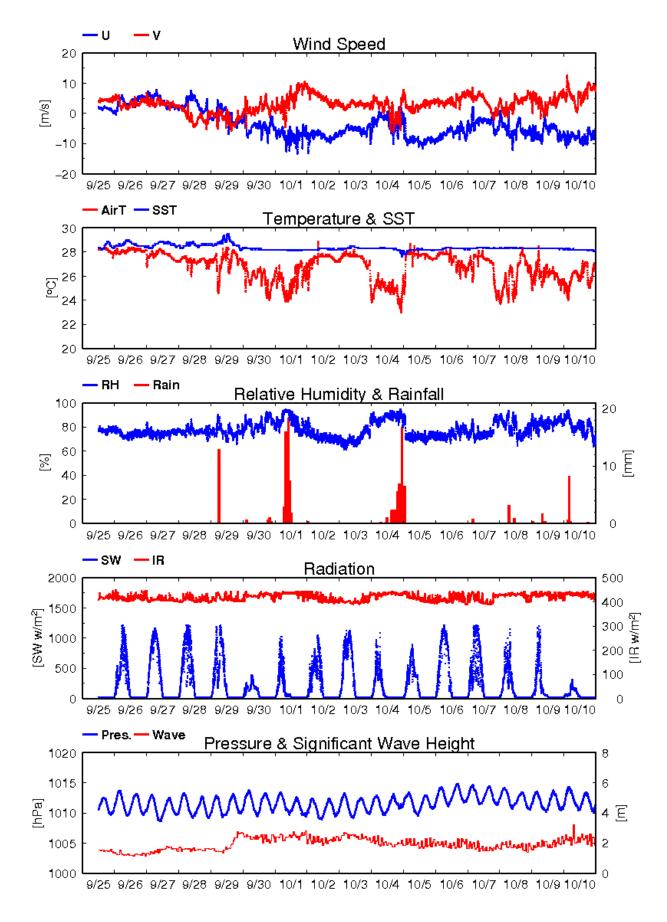


Fig. 5.11-1: Time series of surface meteorological parameters during the cruise.

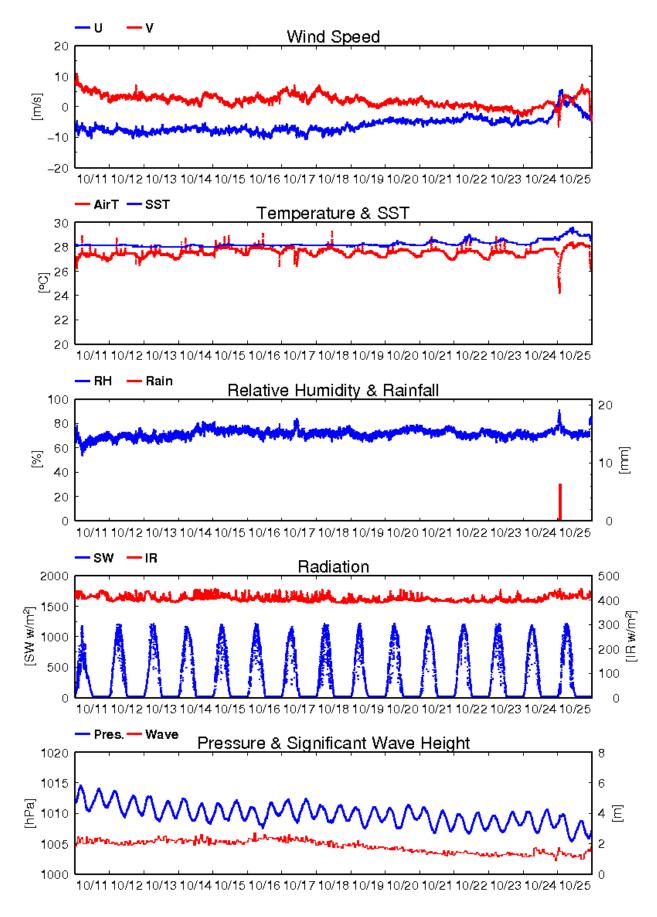


Fig. 5.11-1 (Continued)

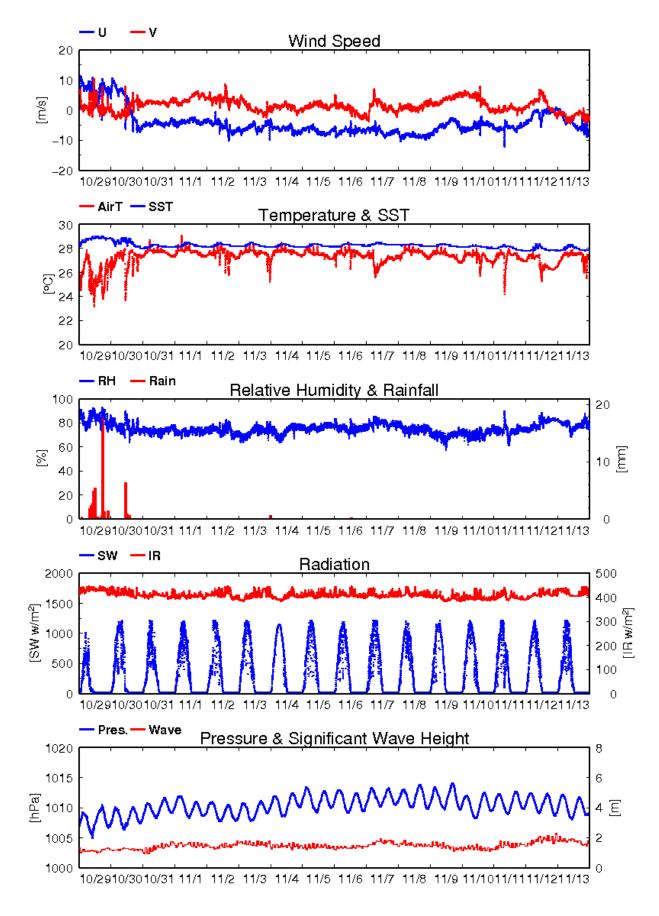


Fig. 5.11-1 (Continued)

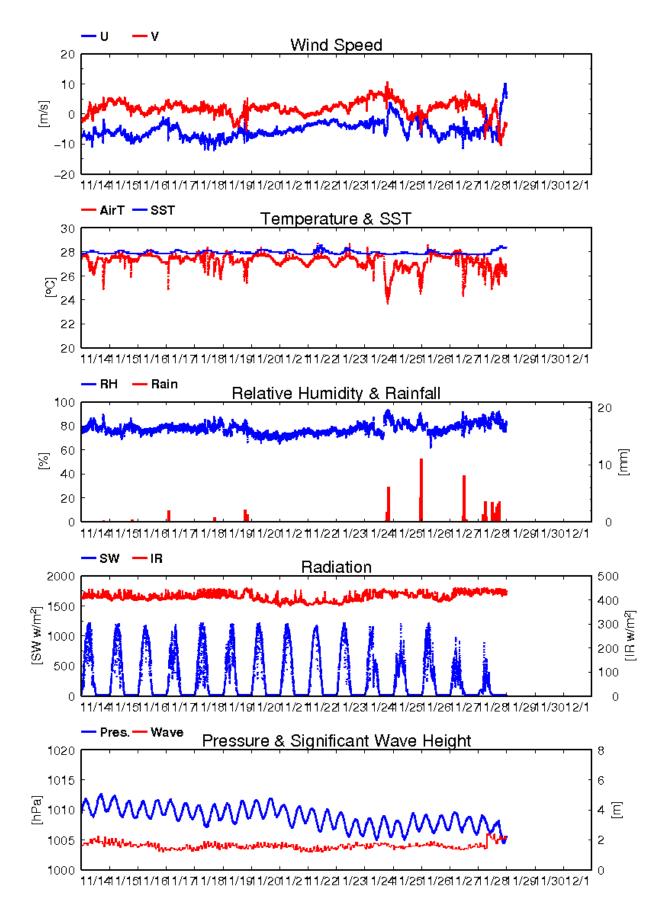


Fig. 5.11-1 (Continued)

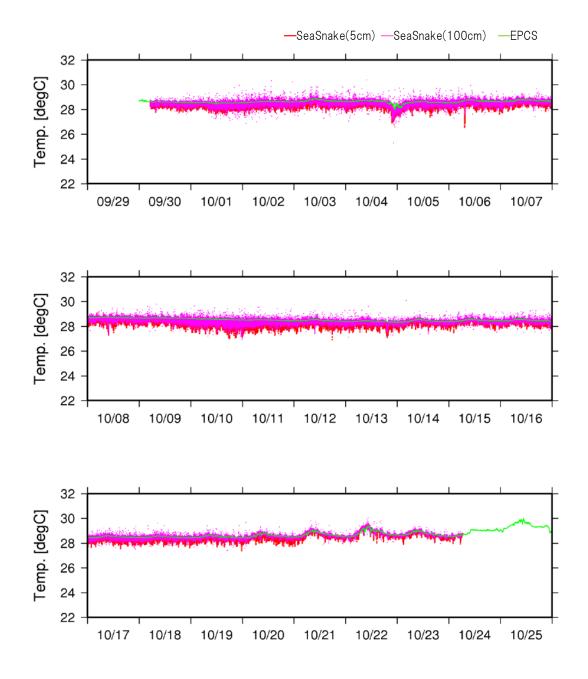


Fig. 5.11-2: Time series of Skin Sea Surface Temperature(SSST, red and purple) and Sea Surface Temperature (EPCS, green) during the cruise.

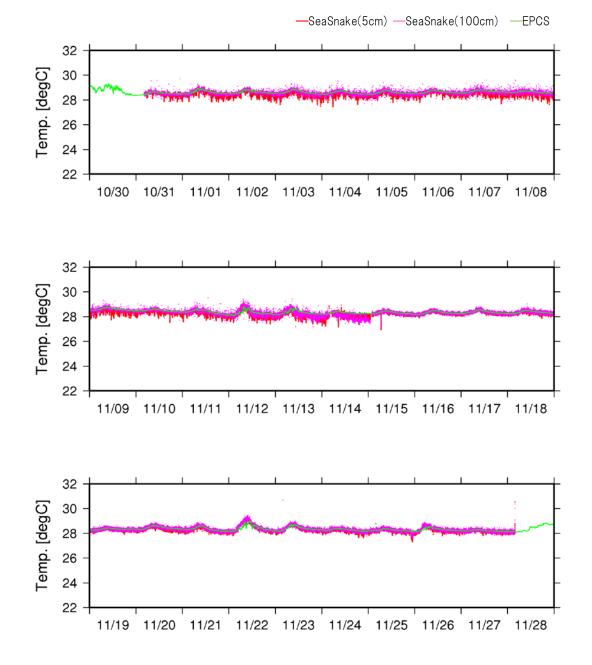


Fig. 5.11-2 (Continued)