- Sensors to Investigate the Ocean at Different Depths
- A CTD is an observational instrument to measure the conductivity (salinity), temperature and underwater pressure (depth) of the ocean, electrically.
The instrument is deployed in the ocean connected by cable to observe a vertical profile of the temperature and salinity. This data will be utilized to analyze the characteristics of seawater and current.

CTD Sensor installed under water sampler

CTD observation data
- Atmospheric and Oceanic Observation in the Pacific and Indian Oceans
- The TRITON array (Triangle Trans-Ocean Buoy Network) is a network of observational buoys and is deployed in the western tropical Pacific and eastern Indian Oceans for the purpose of understanding the phenomena of climate variability, such as El Nino in the Pacific Ocean, Indian Ocean Dipole Mode, and the Asian Monsoon. TRITON buoys observe wind, air temperature, humidity, air pressure, precipitation, solar radiation, and ocean currents, as well as water temperature and salinity to a depth of 750 m. The data is transmitted via satellite in real-time, and provided to researchers around the world, and is also utilized by operational meteorological agencies in a world for daily weather forecasts. Meteological/oceanographic data were collected at a total of 18 spots in tropical Pacific Ocean and Eastern Indian Ocean.

TRITON buoy

Meteological/oceanographic data were collected at a total of 18 spots in tropical Pacific Ocean and Eastern Indian Ocean
- Observation by drifting floats
- Argo is an international project, of which the aim is to build a real-time, high resolution monitoring system for upper and middle layers of the world ocean by deploying approximately 3,500 automatic drifting profiling floats, called Argo floats, into the world ocean.
An Argo float basically drifts at a depth of 1,000 m. Every 10 days, it goes down to 2,000 m and then ascends to the surface measuring temperature, salinity, and pressure profiles. At the surface, it sends the observed data to users via a satellite, and then goes down again to 1,000 m. Each Argo float repeats this observation cycle for about 4 years.
Deploying an Argo float every 300 km square makes possible the real-time monitoring of the global ocean conditions. This will greatly contribute to understanding interannual, decadal and interdecadal variations of the climate system, and also bring in a substantial improvement in the performance of long-term forecast.

Argo floats measure temperature and salinity profiles from 2,000 m up to the surface every 10 days, and then transmit the observed data to land-based facilities via satellites.