星形成と惑星形成を包括する大規模シミュレーション

課題責任者

町田 正博 九州大学 理学研究院

著者

町田正博*1, 原田直人*1, 平野信吾*2, 前田夏穂*3, 川崎良寛*1, 野﨑 信吾*1 *1九州大学 理学研究院, *2東京大学 大学院理学系研究科, *3神戸大学 理学研究科

キーワード:磁気流体,星形成,惑星形成,ジェット,弱電離プラズマ

1. はじめに

星は宇宙の最も基本的な構成要素であるためその形成 過程を理解することは重要である。宇宙の晴れ上がり後、 赤方偏移 z=10-20 で宇宙最初の星であるファーストスタ ーが誕生する。これまでの研究からファーストスターは 短寿命だと考えらており、誕生後 100 万年程度で超新星 爆発を起こし、重元素を周囲に放出する。重元素を含んだ ガスは効率的な冷却によって重力収縮し太陽、または太 陽の数倍程度の軽い次世代星を誕生させる。また、ファー ストスターは、超新星爆発後に中心にブラックホールを 残す。このブラックホールが銀河中心に存在する超大質 量ブラックホールになる可能性も検討されている。その ため、ファーストースターは、その後の時代で形成する星 や惑星の特性、または、宇宙の物質進化と密接に関わって いる。

現在の星形成過程では、星間磁場が非常に重要な役割 りを果たす。磁場の効果である磁気制動やジェットによ って過剰な角運動量が引き抜かれガス収縮を促進する。 また、アウトフローによってガスの多くが星間空間に放 出される。そのため、星の母体となるガスコアの3割程度

が星になる。結果、磁場は星の質量の決定においても重要 な役割りを果たす。 他方、初期宇宙では磁場強度が極めて弱いと考えられ

ている。そのためでのファーストスター形成の研究では 多くの場合、磁場の効果が無視され続けてきた。この研究 では、数値シミュレーションを用いて初期宇宙の微小磁 場がファーストスター形成おいて及ぼす影響について調 べた。

2. 計算手法と初期条件

我々がこれまで開発を続けてきた3次元磁気流体多層 格子法の計算コードを用いて、ファーストスターの母体 であるミニハローを初期条件として星(原始ファースト スター)が形成し、星形成後 1000 年間のシミュレーショ ンを行った。

初期条件として、重力に対して圧力勾配力と外圧で釣 り合ったガス球を準備し、密度擾乱を与えて重力収縮が 誘起するよう設定する。このガス球に一様磁場と回転(剛 体回転)を与える。回転は、重力エネルギーに対する回転 エネルギーの割合が1%になるように設定する。回転エネ ルギーは低解像度の宇宙論シミュレーションで得られた 値とほぼ同等である。また、磁場強度をパラメータとして、 初期宇宙で考えられる $B_6=10^{-20}$, 10^{-15} , 10^{-10} Gauss と極め て弱い磁場を採用する。また、比較のため B=0 Gauss、つ まり磁場が存在しない場合の計算も行う。

計算には我々が開発を続けてきた3次元磁気流体多層 格子法の数値計算コードを使用する。このコードは、ES4 で高速に計算出来るようチューニングされている。 (i, j, k)=(256, 256, 32)の格子を20段重ねて原始星形成後 1000年間の計算を行った。また、計算結果の空間解像度 依存性を調べるためにパラメータは固定して解像度を変 えた計算も行った。結果、原始星自体を空間分解すれば解 像度によって定性的に結果は変わらない事が分かった。

3. 結果

初期宇宙の星形成過程では、ガスの温度が高く、また荷 電粒子を吸着するダストが存在しないため、イオン化度 はある程度高く保たれる。その結果、ジーンズスケール (重力と圧力で決まる典型的な長さ)での磁場の散逸は有 効ではない。この場合、磁束の保存によって、磁場は密度 の 2/3(球対称)、または 1/2(円盤形状)の冪で増幅する。 図1は異なるモデルの磁場分布を時間ごとに示している。 図で上段が最も弱磁場のモデル(B₀=10⁻²⁰G)である。このモ デルでは、星が出来る前の過程で重力収縮による密度の

横軸が中心密度。初期磁場 Bo=10⁻²⁰, 10⁻¹⁵, 10⁻¹⁰ G の 場合の原始星形成時(左), 原始星形成後 10 年(中央), 1000 年(右)の磁場強度分布を示している。 増加によって、磁場強度が10⁻¹⁵G程度まで増幅しているのが分かる。しかし、10⁻¹⁵Gでは磁場強度が弱すぎてダイナミクスに影響を与えない。

その後、星形成後10年間で、原始星近傍の高密度領域 で磁場が10⁵ Gまで急増幅していることが分かる。重力収 縮の過程で、中心部分で分裂が起こり、複数の原始星が誕 生した。また、各々の原始星は高速で自転している。この 時期の磁場の急増幅は、原始星の軌道運動と各々の原始 星の自転がダイナモとして働いたことによるものである。 その後、分裂片は磁気制動によって最も大きな原始星に 落下し単一の星が残るが、単一の星の自転と原始星周囲 のガスの差動回転によって図1 右図のように磁場は増幅 し続けることが分かる。 $B_0=10^{-15}$ G(中段)10⁻¹⁰G(下段)の 場合も同様の磁場増幅が起こっていることが確認出来る。 磁場が弱い場合は、ローレンツ力は非常に弱く、磁場によ るフィードバックが無視できる。結果、磁場がダイナミク スに影響を与える回転エネルギー、重力エネルギーと同 等の強度になるまで増幅を続ける。

(B₀=10²⁰G)が存在している場合の原始星形成後 1000年後の密度分布。

図2は、磁場を無視したモデル($B_0=0, E$)と磁場を考慮 したモデル($B_0=10^{-20}$ G,右)の違いを一枚のパネルに示した ものである。図から分かるように磁場を無視した場合に は中心部の角運動量輸送が効率的でないため回転により 分裂が起こり多くの原始星が誕生する。

他方、右図のように磁場を考慮した場合は、磁場による 角運動量輸送が効率的であり、渦巻状にガスが落下し分 裂は起こらない。この場合は、図のように単一の大質量フ ァーストスターが誕生する。このように、初期磁場が微小 であっても、星形成の過程で磁場が急増幅する。そのため、 磁場はファーストスター形成に重要な役割りを果たすこ とが分かる。

4. まとめと議論

微小磁場がある場合のファーストスター形成の数値シ ミュレーションを行った。従来、初期宇宙の磁場が極めて 弱いためファーストスター形成において磁場の効果は無 視出来ると考えられてきた。しかし、我々の計算によって、 星形成後の複数の星の軌道運動と星自身の自転によって 磁場は急増幅を起こすことが分かった。その結果、磁気制 動などの磁場の効果によって、磁場増幅後の分裂が抑制 される。また、複数の星は軌道角運動量を失って中心星に 落下することが分かった。さらに、中心星周囲には回転で 支えられる星周円盤も形成しない。

我々の結果は、従来考えらえていたように複数の星(フ ァーストスター)が出来るのではなく単一の超巨大質量 星が出来る事を示している。計算は1000年間しか行って いないが、この後さらに中心星が進化すると従来の理論 計算では、星周円盤の上下方向からの輻射により降着ガ スの電離が起こり、ガスが散逸し中心星への降着が終了 すると考えられている。しかし、磁場を考慮すると、星周 円盤(または、回転円盤)は出来ない。そのため、星からの 輻射がどのような影響を与えるのかは自明ではない。も し降着が止まらない場合は全てのガスが落下し、~10⁴太 陽質量を持つ超巨大星になる可能性がある。その場合、相 対論的効果によって重力崩壊がおこり、最終的には超大 質量ブラックホールが誕生すると考えられる。そのため、 ファーストスターが銀河中心の超巨大ブラックホールの 起源であるというシナリオも考えることが出来る。

4. 今後の展開

2021年に打ち上げられた James Webb Space Telescope (JWST)の観測によって 2022年に、宇宙宇初期(高赤方偏 移, z>10)に十分に成長した巨大な銀河が数多く存在する ことが示さた。また、初期宇宙の銀河は従来の理論予想よ りも大きいことが分かった。赤方偏移 z>10では、ファー ストスター形成と銀河形成が同時に起こっている。この 研究で示したように多くのファーストスターが単一の大 質量ブラックホールになるのであれば、短時間で周囲の バリオンをブラックホール周辺に降着して星形成が活発 になり銀河形成が促進されると考えられる。今後、JWSTの 観測結果とシミュレーションを比較検討することによっ て初期宇宙での天体形成を解明することが可能となる。

謝辞

本研究の数値計算は、令和4年度地球シミュレータ公募課題「星形成と惑星形成を包括する大規模シミュレーション」 によって採択された海洋研究開発機構の地球シミュレータ (ES4)を用いて行いました。

文献

 <u>Nozaki, S.</u> and <u>Machida, M. N.</u> "Environmental effects of star-forming cores on mass accretion rate", MNRAS, 519, 5017, 2023

[2] Koga, S. and Machida, M. N. "Dust motion and possibility

of dust growth in a growing circumstellar disk", MNRAS, 519, 3995, 2023

- [3] Sato, A., Takahashi, S., Ishii, S., Ho, P. T. P., <u>Machida, M. N.</u>, Carpenter, J., Zapata, L. A., Teixeira, P. S., and Suri, S. "ALMA Fragmented Source Catalogue in Orion (FraSCO) I. Outflow interaction within an embedded cluster in OMC-2/FIR3, FIR4, and FIR5", 944, 92, 2023
- [4] Fukaya, S., Shinnaga, H., Furuya, R. S., Tomisaka, K., <u>Machida, M. N.</u>, and <u>Harada, N.</u> "Twisted magnetic field in star formation processes of L1521 F revealed by submillimeter dual band polarimetry using James Clerk Maxwell Telescope", PASJ, 75, 120, 2023
- [5] Koga, S., <u>Kawasaki, Y.</u>, and <u>Machida, M. N.</u> "Implementation of dust particles in threedimensional magnetohydrodynamics simulation: dust dynamics in a collapsing cloud core", MNRAS, 515, 6073-6092, 2022
- [6] <u>Hirano, S.</u>, <u>Machida, M. N.</u>, and Basu, S. "Magnetic Effects Promote Supermassive Star Formation in Metal-enriched Atomic-cooling Halos", arXiv:2209.03574. 2022
- [7] <u>Kawasaki, Y.</u>, Koga, S., and <u>Machida, M. N.</u> "Dust coagulation and fragmentation in a collapsing cloud core and their influence on non-ideal magnetohydrodynamic effects", MNRAS, 515, 2072-2087, 2022
- [8] Tokuda, K., Zahorecz, S., Kunitoshi, Y., Higashino, K., Tanaka, K. E. I., Konishi, A., Suzuki, T., Kitano, N., Harada, N., Shimonishi, T., Neelamkodan, N., Fukui, Y., Kawamura, A., Onishi, T., and <u>Machida, M. N.</u> "The First Detection of a Protostellar CO Outflow in the Small Magellanic Cloud with ALMA", ApJL, 936, L6, 2022
- [9] Bino, G., Basu, S., <u>Machida, M. N.</u>, Tritsis, A., Sharkawi, M., Kadam, K., and Das, I. "Synthetic Polarization Maps of an Outflow Zone from Magnetohydrodynamic Simulations", ApJ, 936, 29. 2022
- [10]<u>Hirano, S.</u> and <u>Machida, M. N.</u> "Exponentially Amplified Magnetic Field Eliminates Disk Fragmentation around Population III Protostars", ApJL, 935, L16, 2022
- [11] <u>Maeda, N.</u>, Ohtsuki, K., Tanigawa, T., <u>Machida, M.</u> N., and Suetsugu, R. "Delivery of Gas onto the Circumplanetary Disk of Giant Planets: Planetary-mass Dependence of the Source Region of Accreting Gas and Mass Accretion Rate", ApJ, 935, 56, 2022