高出力レーザによる岩石系材料の溶融過程の粒子法シミュレーション

課題責任者

川人 洋介 海洋研究開発機構 付加価値情報創生部門

著者

鲁田 敏弘*¹

*'海洋研究開発機構 付加価値情報創生部門 数理科学・先端技術研究開発センター

キーワード:レーザ,岩石,相変化,粒子法,並列化

1. 序論

近年,数 kW から 100 kW の産業用高強度レーザが実用 化され普及している。それに伴い、金属加工や溶接など 様々な分野でレーザ光が用いられるようになっており、 このような技術を岩石やコンクリートの加工や切断に応 用する研究が進められている。杉田ら1) はレーザのコン クリート切断への適用可能性を調べるために、出力 5 kW と 20 kW の CO2 レーザを用いてレーザ出力、切断速度、 焦点位置、アシストガスの種類や圧力等をパラメータと して、各種コンクリートやモルタルの切断実験を行って いる。彼らの研究では出力を上げても真上から垂直にレ ーザを当てる手法では切断できるコンクリート厚さに限 界があると結論付けている。Juan ら 2) はコンクリート をプラズマジェットで溶断した際の熱伝搬について、実 験を行い測定した値とコンクリート内部の熱伝導に関す る解析モデルを用いて得られた理論温度を比較すること で,材料内部の熱伝導損失を推定している。呉屋ら3)は, 20 kW を超える高出力ファイバーレーザと超長焦点光学 系を用いることで、最大板厚 1200 mm 極厚コンクリート のレーザ溶断が可能であることを報告している。これら の先行研究の成果に基づき、我々は、独自にコンクリート の溶断実験を行い、1000mm 程度のコンクリートの溶断を 実験によって確認している (図-1).

レーザ溶断を実用的な手法とするためには、効率的な レーザ照射条件を定める必要がある.レーザ照射条件を 変化させて溶断状況を観察した貴重な例 4)が報告されて いるが、様々な状況に対する諸条件を実験的に同定する には多大な労力とコストが発生することが予想されるた

学に立脚した数値シミュレーションによって現象を予め 予測することで、効率的なレーザ照射条件を定めるアプ ローチを選択した.

本研究では、地球シミュレータで効率よく計算ができ るよう開発した並列化コードの実証と、コンクリートに 対するレーザ溶断実験結果と整合性のあるシミュレーシ ョン結果の確認を目的とする.

2. 理論と手法

本研究で使用するアルゴリズムは非圧縮性流体の MPS (Moving Particle Semi-implicit) 法5),を基に開発さ れたアルゴリズム 6) を岩石系固体材料を扱うために改 良を加えたものである。具体的には、レーザ照射によるエ ネルギーの授受に関して、仮想的な光粒子を用いて衝突 によってエネルギーを岩石側の粒子に与えている。レー ザのエネルギー吸収率という概念を導入することで、吸 収率のパラメータをレーザ溶断の進行速度とシミュレー ション結果と比較することで簡便に決定できる利点があ る。光粒子のエネルギー分布はガウス分布を仮定してお り、以下の式(1) で表される6)。

$$f(X) = C \exp\left(-\frac{X^2}{2\sigma^2}\right) \tag{1}$$

ただし X は, x: レーザ照射中心からの距離、r: レー ザ照射半径を用いて, X=x/r で定義される無次元量, C: 光粒子のエネルギーの合計値はレーザが単位時間あた りに物体に与えるエネルギーと等しくなるよう設定した 定数、 σ^2 : レーザ照射中心からの無次元距離 X に関する 分散である。

光は材料に衝突する際、光学の偏光特性と入射角度に 応じて吸収率 A が変化する。このモデルでは p 偏光に 対する吸収率 A_p とs 偏光に対する吸収率 As を以下の 式(2a)、(2b)で表す 6)

$$A_p = \frac{4n\cos\theta}{(n^2 + k^2)\cos^2\theta + 2n\cos\theta + 1}$$
(2a)

図・1 レーザで溶断されたコンクリート め、我々はレーザと材料のエネルギー授受を考慮した力

$$A_s = \frac{4ncos\theta}{n^2 + k^2 + 2ncos\theta + cos^2\theta}$$
(2b)

ただし*n*: 屈折率、*k*: 消衰係数である。数値計算では *A*_p と*A*_s の相加平均にパラメータα を乗じたものを吸収率 *A* として用いている。このα は実験的に同定する必要が ある.本研究ではレーザ溶断速度がシミュレーションと 実験との間で一致するよう α を決定した。

また、複合材料を粒子法で取り扱うため、物性パラメー タには平均量であるコンクリートの物性を用いると共に、 固体状態のコンクリートを粘性の極めて高い流体とした。 既存のコンクリートの物性に関する研究を参考とした。

現象の再現に向けて、重力方向の違いによる溶融物の 流動状況の把握と、端部境界の影響の把握を目的とした シミュレーションを行った.35×35×100 = 122500 粒子 を用いて、重力方向の異なる供試体に同一レーザを照射 して溶融状況の相違の照査と、レーザ照射部分を移動さ せた場合の溶融形状の特徴の照査を行った.

3. 結果

図-2 に重力方向を変化させた場合の結果を示す.レーザ 照射方向と重力が同一の場合には,溶融した液相が滞留 していることが観察される.一方,レーザ照射方向と重力 方向が 90 度をなす場合には,溶融した液相が排出されて いることが観察される.溶融深さは後者のほうが大きく なった.図-3 にレーザを移動させながら照射した場合の 結果を示す.最初に照射を受けた端部では,溶融物が押し 出される状況が観察された.照射部の移動の後,再び到達 した端部では,中央部に比べて溶断が深くなる状況が観 察された.

図-3 レーザを移動させた場合の溶融形状 (左から t=0.0333,0.0666,0.1000 sec)

4. 結論

レーザを光粒子としてモデル化した粒子法により,岩 石系材料の溶融のシミュレーションの適用可能性を検討 した.まず,重力の影響で溶融物の挙動が異なることが再 現され,得られた結果から,実験で報告されている,鉛直 上向きからのレーザ照射では溶融物の排出が行われず溶 断長さに限界が生じる状況や,水平方向からのレーザ照 射では溶融物の排出が促進されて溶断長さが増加する状 況と整合性が確認できた.次に,端部からの溶断における 溶断深さの形状が再現され,既報告の実験結果 4)との整 合性が確認された.

文献

K. Sugita, M. Mori, and T. Fujioka, "Application of CO2 Laser to Concrete Cutting," Concrete Journal, Japan, Vol. 24 (9), 13-22, (1986), https://doi.org/10.3151/coj1975.24.9_13

[2] J. C. Chamorro, L. Prevosto, E. Cejas et al., "Plasma Cutting of Concrete: Heat Propagation and Molten Mate-rial Removal From the Kerf," IEEE TRANSACTIONS ON PLASMA SCIENCE, Vol. 47 (6), 2859-2867, (June 2019),

https://doi.org/10.1109/TPS.2019.2914394

[3] S. Goya, H. Mori, T. Okuda, Y. Fujiya, et al.,
"Development of Thick Concrete Cutting System Using High-Power Laser," Mitsubishi Heavy Industries technical re-view Vol. 58 (1), 1-8, (2021)

{4} K. Nagai and K. Shimizu, "Using a High-Power Fibre Laser to Cut Concrete", Applied Science, 11(10), 4414, (2021)

[5] S. Koshizuka, "A particle method for incompressible Viscous Flow with Fluid Fragmentation," Computational Fluid Dynamics J.4,

[6] K. Kinoshita, Y. Kawahito, and S. Katayama, et al., Visualization of Interaction between Fiber Laser Beam and Laser-Induced Plume, Japan Welding society, Vol.13 (1), 41-47, (2006).