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1. Introduction

First-arrival traveltime tomography (FAT) using refraction 

seismic data is a crucial and useful technique for understanding 

the seismic wave velocity structure at depth. In order to ensure 

the reliability of the estimation, it is essential to quantify the 

uncertainty of seismic velocity estimates in tomography. For this 

purpose, Bayesian estimation has been introduced to seismic 

tomography to estimate the posterior probability distribution 

function (P-PDF) of the velocity structure based on errors in 

travel time data and prior information (e.g., [1]). All of these 

previous studies introduce a grid- or mesh-based discretization of 

the analysis domain for calculating the travel time using a 

numerical method and parametrizing the velocity for Bayesian 

estimation. Since this estimation problem is nonlinear, sampling 

methods such as Markov chain Monte Carlo (MCMC) are 

commonly used.  

Physics-informed neural networks (PINN) [2], 

which solves partial differential equations and inverse problems 

with neural networks (NNs) constrained from the equations, has 

attracted much attention in recent years. It has been also applied 

to seismic tomography [3]. This is a mesh-free framework that 

leverages continuous functions represented by NNs, which are 

plausible and flexible for modeling the velocity structure. 

Considering this advantage, this study develops a novel and 

efficient Bayesian estimation framework for PINN-based 

seismic tomography [4]. 

2. Methods

In PINN-based seismic tomography, two NNs are used: one 

predicting seismic velocities from coordinates and the other 

predicting travel time from the source and receiver coordinates. 

The weight parameters of the two NNs are optimized so that the 

predicted travel time is close to the observed one, while the 

seismic velocity and travel time satisfy the Eikonal equation at 

random evaluation points. In Bayesian seismic tomography, the 

goal is to estimate the posterior predictive distribution of seismic 

wave velocities predicted by the NNs. Such an approach is 

classified as Bayesian neural network (BNN), in which the 

weight parameters that compose NNs are Bayesianly estimated 

using prior information. We introduce a novel and efficient 

Bayesian estimation method called particle-based variational 

inference (ParVI), best known by stein variational gradient 

descent (SVGD) [5], which has advantages in its high parallelism 

and good approximation efficiency. In SVGD, a functional 

expressing the difference between the PDF approximated by 

many particles and the true one is minimized by updating each 

particle sequentially using gradient information. However, when 

the network structure is complex, multimodality of the P-PDF of 

the weight parameters becomes stronger, and the BNN based on 

ordinary SVGD underestimates the uncertainty. Therefore, we 

formulate SVGD not in the space of weights, but in the space of 

continuous functions predicted by the NN [6], i.e., seismic wave 

velocities. This approach leverages the assumption that the shape 

of the PDF in the function space is simpler and smoother than in 

the weight space, and thus easier to approximate. We call this 

proposed method “velocity-space SVGD for PINN-based 

seismic tomography“ (vSVGD-PINN-ST). The computer 

program was written by Python, using the deep learning 

framework of Pytorch. MPI parallelization is employed for 

particles introduced by SVGD using “MPI for Python”. 

3. Results of numerical experiments

We first verified our method via one-dimensional linear 

tomographic analyses with Gaussian prior and likelihood 

function, obtaining the posterior PDF that agrees well with 

analytical solutions. Such problems cannot be handled by naive 

baseline algorithms that perform SVGD in the weight space of 

both velocity and traveltime NNs. Then we conducted numerical 

experiments on the observation arrangement and velocity 

structure simulating refraction FAT (Figure 1). 512 SVGD 

particles were employed. The mean velocity model agrees well 

with the true one within the ray coverage. The uncertainty is 

larger outside of the coverage, while it is smaller but shows 

heterogeneous distribution elsewhere. The results of estimating 

the P-PDF were found to be reasonable for the observation 

arrangement. This result suggests that the proposed method is 

applicable to real seismic data. In addition, each particle (sample) 

of the velocity distribution that constitutes the approximate P-
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PDF had a physically natural smooth distribution represented by 

NN (Figure 2). This is in contrast to some previous Bayesian 

seismic tomographic methods based on adaptive and low-

dimensional parametrization, in which individual samples 

discontinuous velocity distributions due to Voronoi tessellation 

(e.g., [7]). This calculation used 512 CPU cores (64-core AMD 

EPYC 7742 x 8) in Earth Simulator and required 27.8 hours.   

4. Conclusion

In this study, we developed the vSVGD-PINN-ST algorithm, 

which performs PINN-based Bayesian seismic tomography 

using SVGD, the best-known particle-based variational 

inference method, applied in the velocity space predicted by NN 

and enhanced with several mathematical and numerical 

techniques. The vSVGD-PINN-ST performance was tested in 

the one- and two-dimensional Bayesian seismic tomography 

synthetic tests. The success of the 2D synthetic test adopting a 

realistic observation geometry suggests that our method is ready 

for application to actual observational data first-arrival traveltime 

tomography, which we consider as the next task.  
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Figure 2. Three examples of individual particles 

(ensemble members).  

Figure 1. Numerical experiment on the observation 

arrangement and velocity structure simulating refraction 

FAT. (Upper) The true velocity model. (Middle) The 

estimated mean velocity model. The gray dashed line 

denotes the lower limit of ray coverage. (Bottom) The 

estimated standard deviation (SD).  
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