Massively parallel simulation of Geologic CO $_{\!\!2}$ storage on the Earth Simulator

Project Representative

Hajime Yamamoto Taisei Corporation

Authors

Hajime Yamamoto^{'1}, Shinichi Nanai^{'1}, Keni Zhang^{'2}, Noriaki Nishikawa^{'3}, Yuichi Hirokawa^{'3}, Ryusei Ogata^{'4}, Kengo Nakajima^{'5}

- * 1 Taisei Corporation
- * 2 Beijing Normal University (E.O. Lawrence Berkeley National Laboratory)
- * 3 Japan Agency for Marine-Earth Science and Technology
- * 4 NEC Corporation
- * 5 The University of Tokyo

Abstract

CCS (carbon dioxide capture and storage) is a promising approach for reducing the greenhouse gas content in the atmosphere, through capturing carbon dioxide (CO_2) from large emission sources and injecting it into reservoirs (such as deep saline aquifers). Large-scale storage projects will likely involve very long-term storage of huge amounts of CO_2 , potentially exceeding hundreds of millions of tonnes (Mt). This study intends to demonstrate potential benefits of massively parallel computing technology for simulating geologic CO_2 storage for important scientific and engineering topics. A parallelized general-purpose hydrodynamics code TOUGH2-MP has been used on scalar architectures where it exhibits excellent performance and scalability. However, on the Earth Simulator (ES2), which is a massively parallel vector computer, extensive tune-ups were required for increasing the vector operation ratio. In this year, we simulated a diffusion-dissolution-convection process in a threedimensional, field-scale reservoir model, which is largely computationally demanding; for investigating the impact of the convective mixing of dissolved CO_2 on long-term stability of CO_2 in storage reservoirs.

Keywords: large-scale simulation, CCS, CO₂, global warming, groundwater

(b) Perspective view

Figure 1 A preliminary simulation result of diffusion-dissolution-convection process in a 3D reservoir model. CO_2 is injected in supercritical state with the rate of 100kt/year for one year. Due to the gravity convection, CO_2 dissolution in groundwater is greatly enhanced and eventually the supercritical CO_2 disappears.