環境負荷低減に向けたナノカーボン材料に関する 大規模シミュレーション

プロジェクト責任者

渋谷 明慶 日本ゼオン株式会社 新材料開発研究所

著者

小野 裕己^{*1}、荒木 拓海^{*1}、中村 賢^{*1}、渋谷 明慶^{*2} *1 一般財団法人 高度情報科学技術研究機構 *2 日本ゼオン株式会社 新材料開発研究所

利用施設:独立行政法人海洋研究開発機構 地球シミュレータ 利用期間:平成 25 年 11 月 7 日〜平成 26 年 11 月 6 日

アブストラクト

最近、銅などの一般的な伝導体に比べて約100倍という極めて高い電流容量を持つカーボンナノ チューブ銅複合材料(以下 CNT-Cu という)が開発された。ナノカーボン物質に匹敵するこの高い 値は、この複合材料におけるカーボンナノチューブ(以下 CNT という)の寄与の大きさを示してお り、この発現機構の特定は物理的にも非常に興味深い。しかし現在までのところ構造や伝導機構の大 まかな推計に留まっており、今後さらに深い解析が望まれる。そこで本研究ではまず、この複合材料 の原子スケールでの構造やその安定性を第一原理電子状態計算によって解析し、取り得る詳細な原子 配置、構造安定性、振動解析、そして CNT と銅との間の電荷の移動について考察した。その結果、 CNT は銅原子からの電荷の供給は受けるものの、同時に銅原子が CNT の伝導にとっての散乱源とな り、CNT そのものの電気伝導度は上がらないことがわかった。続いて、高い電流容量の発現要因を 解析するため、個々の電子の流れによって発生する原子の駆動力源である電流誘起力(current-induced force)の解析を行った。その結果 CNT と Cu との間に大きな電流誘起力がかかっている様子が定量 的にわかり、このストレスと界面付近の構造安定性との競合によって電流容量が決定されるものと期 待される。最後に、第一原理電子状態計算による CNT-Cu の固有振動解析を行い、その結果に基づい て CNT-Cu における銅の格子振動が純銅の場合に比べ抑制されることを推論した。この格子振動の抑 制が CNT-Cu での電気抵抗の温度依存性が低いことの理由であると考えられる。

キーワード:カーボンナノチューブ、複合材料、第一原理計算、非平衡グリーン関数、電流誘起力

1. 背景および目的

カーボンナノチューブ(以下 CNT という)は優れた機械的・電気的特性を有し、これらの特性を 活かしたナノ複合材料の開発が注目されている。2013年、独立行政法人産業技術総合研究所の研究チー ムは銅と CNT の複合材料(以下 CNT-Cu という)が、銅と同程度の電気伝導度を有し、かつ銅の約 100 倍の電流容量を併せ持つ優れた性質を発見した¹⁾。このように CNT-Cu は環境負荷低減に効果の ある電子回路等の省電力技術に大きく貢献すると期待できる。一方、工業的にこれらの材料を効率的 に大量生産するためには、機能発現に必要な因子を明らかにする必要がある。しかし現在のところ、 CNT-Cu の電気伝導機構に対する理解は不十分であり、なぜこのような特性を示すのかの発現機構は 明らかになっていない。

本研究は、CNT-Cuの第一原理計算を行い、その優れた電流特性の物理機構について論じたもので ある。この目的に対して、既存の計算コードを適用するだけでなく、強結合ハミルトニアンや原子ス ケールでの電流や電流誘起力(current-induced force)の計算コードの開発にも取り組み、研究を加 速させた。

研究の方法

2.1. Quantum Espresso パッケージと PHASE パッケージ

本研究における高精度なシミュレーションでは、Quantum Espresso パッケージと PHASE パッ ケージを導入した。これらのパッケージは、密度汎関数理論に基づいて第一原理的に電子状態計算や ダイナミカルマトリックス計算を実行できるものである。また WANNIER90 パッケージを使用して、 Quantum Espressoの計算結果から有効ハミルトニアン行列を構築し、コンダクタンスの計算を行った。

2.2. 拡張ヒュッケルプログラム

ダイナミカルマトリクス計算には多くの計算量を要するため、今後より大規模な系を計算対象に考 えると、Quantum Espresso パッケージや PHASE パッケージよりも簡便な手法が必要となる。しか し同時に電流誘起力を計算するには電荷移動を加味したハミルトニアン行列の微分などが必要となる ため、古典的な手法では記述が不十分になる。そこで、電荷移動も再現でき、かつ計算量の簡便さを 両立する手法として拡張ヒュッケル近似を用いたタイトバインディング電子状態計算手法^{2),3)}を採用 し、そのプログラム開発を行った。その結果、第一原理電子状態計算コードに比べて極めて少ない計 算量でハミルトニアン行列の微分などが求められるようになった。本研究では100原子以上から成る CNT-Cu のハミルトニアン行列とその微分を数種類用意した。

2.3. 非平衡グリーン関数法による微視的な電流と電流誘起力

WANNIER90 パッケージのような既存のプログラムでは、微視的な電流の計算や電流の流れによっ て生じる電流誘起力の計算を行うことができない。そこで開発した拡張ヒュッケルプログラムによっ て計算されたハミルトニアン行列とその微分から、微視的な電流と電流誘起力を求めることができる プログラムも開発した。

計算結果とその解析

3.1. 局所的な安定構造とその電子状態解析

CNT-Cuの概略的な構造は予想されているものの、個別原子レベルでの詳細な構造は未知のままで ある。第一原理計算等を用いて電子状態を把握し、そこから実際の伝導特性を解析できるようにする ためには、この原子レベルでの詳細な安定構造を把握する必要がある。銅原子は4s軌道が埋まって おらず、CNT 表面と化学吸着することが出来る。しかし同時に銅原子同士で凝集し小さなクラスター を作る傾向もある。実際の CNT-Cu において、どれほどの銅原子がどの程度 CNT 表面に吸着してい るのか、またそれによってどう電子状態に影響するのかを具体的に把握する必要がある。

そこで、この複合材料の原子レベルの構造安定性、および化学吸着した銅から CNT 側へ電荷移動 の程度、それによって CNT そのものの伝導特性が向上するのかに着目しながら、構造解析・電子状 態解析を行った。CNT の周りに銅原子を1~ 33 個(炭素原子 100 個分の CNT あたり)ランダムに 配置させ、それぞれの構造を第一原理電子状態計算コード(PHASE および Quantum Espresso)を 用いて緩和させた。図 3.1-1(左)の黒線は、構造緩和後に CNT 表面に直接吸着している銅原子の 数をプロットしたものである。また青線は、その際のフェルミ準位での状態密度(DOS)の値をプ ロットしたものである。配置させた銅原子が1~15個程度までは原子数の増加に伴って表面吸着数 が増えるのに対し、16 ~ 32 個ではそれ以上吸着数が増えなくなる。銅原子を増やしても CNT 表面 には行かず、既存の吸着銅原子の上に積もっている様子が伺える。さらに銅原子を増やし 33 個にす ると、銅原子が互いに凝集しクラスターを形成させ、CNT と互いの表面を接しているだけになった。 黒線で示したプロット数が急激に低下しているのはこのためである。一方、青線で示した DOS の値 もこれに応じた変化をしている。CNT 表面に吸着した銅原子数が増加するに従い DOS 値も上昇する が、33 個で CNT 表面から大多数の銅原子が剥離すると DOS 値も低下している。図 3.1-1(右)は、 銅原子を 16 個配置させた場合の DOS の例である。青線は CNT-Cu 全体の DOS から銅原子の部分状 態密度(PDOS)を引いたもので、銅吸着による CNT の DOS の変化が把握できる。この図では単体 CNT の DOS (灰線) に比べてフェルミ準位 (Energy=0[eV]) 周辺の値が上がっており、吸着した銅 原子から CNT 側へ電荷が供給されていることがわかる。

図 3.1-1 (左) 銅原子をランダムに配置した後に構造緩和したときの銅原子の吸着数(黒線)と、それによるフェ ルミ順位での DOS の値(青線)。(右) 銅原子を 16 個配置した後に構造緩和したときの CNT-Cu 全体の DOS から銅原子の PDOS を引いた値(青線)。比較のため単体 CNT の DOS も記述してある(灰色)。

以上の解析では CNT は真空中に孤立したものを仮定した。そこで続いて CNT がバンドル状になった場合の銅原子の安定構造とフェルミ準位での DOS 値について同様の解析を行った。安定構造の一例としてバンドル状 CNT(黄色)に 7 個の銅原子(茶色)を配置させたときの構造を図 3.1-2(左)に示す。CNT 間の狭い空間に押し込められるため、より効率的に CNT 表面に吸着している様子がわかる。バンドル状 CNT の場合の DOS 値(図 3.1-2(右)の濃青線)も単一 CNT の場合(図 3.1-2

(右)の薄青線)に比べて銅原子数の増加に応じて大きく上昇している様子が伺え、その分多くの電荷が CNT 側へ供給されていることがわかる。この DOS 値の上昇は銅原子 20 個程度までは見られる。 それ以降は CNT 間の空間を押し広げて銅クラスターを形成し始めたが、単一 CNT の場合に比べてより多くの銅原子を化学吸着させ、クラスターの形成が抑えられる傾向がある。

続いてすべての銅原子が CNT 表面に吸着している図 3.1-2(左)の構造について、351[K]の条件下 で体積一定の第一原理分子動力学計算を行ったが、初期の吸着構造を 10[psec.] 以上保ったままであり、 安定的に存在し得ることが確認された。

図 3.1-2 (左) バンドル CNT とその隙間に配置された銅原子の様子 (茶は銅原子、黄は炭素原子で、構造緩和済み)。 (右) バンドル状 CNT-Cu のフェルミ準位での DOS の値 (濃青線)。横軸は吸着した銅の原子数。薄青線 は単体 CNT-Cu の系におけるフェルミ準位での DOS 値。

3.2. 電気伝導度解析

前節の安定構造と状態密度の解析によって、銅が CNT 表面に吸着する様子とその際に CNT の状態 密度が受ける影響を把握した。その結果、実際に銅原子が吸着し電気伝導度に寄与するフェルミ準位 近傍の DOS 値が上昇することも確認された。しかし一方で、均質な CNT に銅原子が吸着することは 電気伝導時の散乱体として作用する要素も持っており、系全体の電気伝導度の変化を具体的に把握す るためには、直接に電気伝導度の解析を行う必要がある。

そこで続いて、前節の構造解析で得られた平面波基底の波動関数をワニエ基底関数に変換し、それ を伝導度解析プログラム WANNIER90 に用いることで電気伝導度を解析した。図 3.2-1 (左)の赤線 は銅原子の数に応じたコンダクタンスの値をプロットしたものである(黒線は CNT 表面への銅原子 の吸着数で、図 3.1-1 (左)の黒線と同一のもの)。吸着数の増加とは相関が見られず、単体 CNT の コンダクタンス 2[2e²/h]をほぼ保っている。銅から CNT への電荷移動によって DOS 値の上昇は見ら れたが、同時に散乱体としての寄与がこの効果を相殺し、結果として単体 CNT の伝導度とほとんど 変わらない結果になった。

一方、CNT 周りの銅配置をユニットセルを跨いで互いに短絡するように意図的に工夫した場合、 コンダクタンスが 6.996[2e²/h] と大きい値となった。銅短絡の無い場合は全て 1.000[2e²/h] あるいは 2.000[2e²/h] であったため(図 3.2-1(右))、銅原子が主な伝導を担っており、CNT そのものの電気 伝導特性の変化はあまりないものと考えられる。

以上の結果を受けて、銅 CNT-Cu 複合材料で電気伝導を主に担っている要因をより明確に解析する

図 3.2-1 (左) 単体 CNT 表面への銅原子の吸着数(黒線)とコンダクタンス(赤線)の比較。(右) コンダクタ ンスが高いときと低いときの構造の比較。(茶は銅原子で、黄は炭素原子、構造緩和済み)

図 3.2-2 コンダクタンスの比較を行った系の概略図。細長いワイヤー状の系を長軸方向(正面)から見たもの。(茶 は銅原子、黄は炭素原子、構造緩和済み)

ため、図 3.2-2 に示す3種類の系についてそれぞれのコンダクタンスを比較した。

CASE1 では全てが銅原子からなるワイヤーを、CASE2 では中に空けた穴に CNT を通した複合ワ イヤーを、CASE3 では同じ穴を空けただけのワイヤーを用意し、構造緩和後にそれぞれのコンダク タンスを計算した。図 3.2-3 はそれぞれの CASE におけるコンダクタンスのグラフである。CASE1

では大きかったコンダクタンスが CASE3 ではあけ た穴の断面積にほぼ比例して落ちている。この穴に CNT を通した CASE2 でもほとんど同じコンダク タンスを示しており、このことから CNT-Cu にお いて CNT そのもののコンダクタンスへの寄与は大 きくないことが改めて示唆される。

次に、図 3.2-4 (左) のように左右の電極部は単体の CNT、中心の伝導部に簡単な構造を持つ銅吸着 CNT のユニットを用意して、これと、この吸着部のユニットをもう一つ追加したときのコンダクタンスの違いを比較した。これにより銅吸着の影響がより明確に理解できる。右下図の赤線に示す CNT

図 3.2-3 コンダクタンスのエネルギー依存性。 CASE1 (赤線)、CASE2 (緑線)、CASE3 (青 線) による比較。

図 3.2-4 (左) 銅原子 2、3 個が CNT 表面に並んで吸着した様子。(茶は銅原子、黄は炭素原子で、構造緩和済み) (右) コンダクタンスのエネルギー依存性。単体 CNT (赤色)、銅原子 1 個が吸着した場合(緑色)、銅原 子 2 個が吸着した場合(青色)、炭素原子 3 個が吸着した場合(紫色)の比較。

のコンダクタンスがフェルミ準位周 辺でほぼ2と一定なのに対し、2つの 銅原子が並んだ場合(Cu:2 青線)は コンダクタンスの低下が見られる。 この吸着部ユニットをさらにもう一 つ追加した場合(Cu:3 ピンク線)、コ ンダクタンスはさらに低下している。 ここでもやはり個別に CNT 表面に吸 着した銅原子はコンダクタンスの低 下要因になっていることが示唆され る。

さらに銅原子の吸着によって CNT

図 3.2-5 CNT-Cu における電流の分布。青い矢印が各原子を流れ る電流の向きと大きさを表す。(左) カーボンナノチュー ブを横から見た図。(右) カーボンナノチューブの軸方向 からみた図。

のコンダクタンスが低下する様子を視覚的に理解するために、CNT-Cuにおける電流経路のシミュ レーションを行った。図 3.2-5 は図 3.2-4 の 2 つの銅原子が並んだ系に対するシミュレーション結果 である。青い矢印が各原子を流れる電流の向きと大きさを表している。2 つの銅原子間には電流がほ とんど流れていないことがわかる。また銅原子を流れる電流の向きは CNT の軸方向と垂直であり、 CNT の炭素原子から銅原子に流れ、再び炭素原子に流れていく。図 3.2-4 (右) に示したように、銅 原子が CNT に吸着するとコンダクタンスが大きく減少するというシミュレーション結果が得られた が、上図において CNT の軸方向と垂直に流れる電流成分が大きいことからも、銅原子が散乱体とし て働いていることが理解できる。

他方、銅原子が吸着していない理想的な CNT の場合、CNT の軸方向に垂直な電流成分は数値計算 の誤差範囲に含まれてしまうほど小さい。これは理想的な CNT がバリスティック伝導を示す事実と 符合する。

以上の構造・伝導解析から、安定構造にある静止状態の CNT-Cu のコンダクタンスには CNT はほ とんど寄与していないことが予想される。

3.3. 電流容量解析

実験事実として、CNT-Cu は高温時においてもコンダクタンスの低下が非常に少ないことや、電流 容量が極めて大きいことが分かっており¹⁾、このことは単なる銅ワイヤー等では説明のつかない特徴 である。よく知られているように炭素原子による共有結合からなる CNT は構造的に非常に強く、耐 熱温度が非常に高い。つまり CNT-Cu における CNT の役割は、柔らかい銅ネットワークを保持する 「支柱」としての側面が強いことが期待できる。高温時の大きな熱揺らぎによって銅原子が動き破断 する、または大電流時に発生する電流誘起力によって銅原子が押し流され破断する。これらを防ぐ役 割を担っているのが支柱としての CNT ではないかと予想される。

この予測を確かめるべく、以下では CNT-Cu における電流誘起力のシミュレーションを行い、それ に基づいて電流が流れている環境下での CNT-Cu の構造安定性を評価した。まず始めに図 3.2-4 の 2 つの銅原子が並んだ系に対するシミュレーション結果を図 3.3-1 に示す。青い矢印が各原子に働く電 流誘起力の向きと大きさを表す。図 3.3-1 を見ると、銅原子と銅原子が吸着した近傍の炭素原子に力 が集中していることがわかる。この電流誘起力によって銅原子や炭素原子が動かされ、それによって CNT-Cu が破断する可能性がある。

そこで CNT-Cu での破断の可能性を調べるために、CNT-Cu が破断する電流値に近い状況下での シミュレーションを次のように行った。実験により得られた CNT-Cu の電流容量は 6 × 10⁶[A·cm⁻²] であり、この値から 1 つの銅原子を流れる電流を推定すると 10⁻⁶[A] のオーダーである。印加バイアス の値を 0.2[V] に設定してシミュレーションを行うと、図 3.2-4 の 2 つの銅原子に流れる電流が 1.9 × 10⁻⁶[A] と 1.6 × 10⁻⁶[A] になった。これらの電流値は実験で観測されている電流容量の大きさに近いの で、この系で印加バイアスの値を 0.2[V] に選んでシミュレーションを行うことは、CNT-Cu が破断す る近傍を観測していることに対応する。この条件下でのシミュレーション結果によると、2 つの銅原 子には 0.33[eV Å⁻¹] と 0.47[eV Å⁻¹] の力が働き、銅原子の近傍にある炭素原子には最大 0.39[eV Å⁻¹] の力が働いている。

次に、電流誘起力による CNT-Cu の構造不安定性を評価するために、第一原理計算を用いた NEB 計算を実行して移動した位置における全エネルギーと原子に働く力を計算した(図 3.3-2(上))。 十分に遠方まで原子を移動させていないので、働く力がゼロに向かっていないが、図を見ると 10 step 付近で力の大きさが上限値に達しているような様子が見て取れる。したがって以下の議論では、銅

原子を移動させた場合の力の最大値は 1.2[eV Å⁻¹] 程度、炭素原子を移動させ た場合の力の最大値は 8.0[eV Å⁻¹] 程度 と仮定する。

安定構造の CNT から炭素原子を移動 させていくと、急速に炭素原子に働く力 が増大し、その大きさがおよそ 8.0[eV Å⁻¹]までに達してしまうので、上記のよ うな 0.39[eV Å⁻¹]以下の電流誘起力では 大きな構造の変化は生じないと予想され る。しかし銅原子の場合は、電流誘起力

図 3.3-1 CNT-Cu における電流誘起力の分布。青い矢印が各 原子に働く電流誘起力の向きと大きさを表す。(左) カーボンナノチューブを横から見た図。(右) カーボ ンナノチューブの軸方向からみた図。

と NEB 計算での力と電流誘起力との差が炭素原子ほどの大きくなく、CNT-Cu において銅原子の原 子配置が変化する可能性はあるので、シミュレーションの立場からもこのときの電流値を電流容量と 考えることができる。そして CNT-Cu の断線は銅原子の移動によって生じていると推論される。

今回は NEB 計算を援用して CNT-Cu の構造安定性を評価したが、今後は電流誘起力を考慮した大 規模分子動力学により、より詳細な解析を行っていきたい。

移動(左半分)とC原子の移動(右半分)の比較。

3.4. 振動解析

独立行政法人産業技術総合研究所の研究チームが行った実験によると、CNT-Cu は純銅に比べ電気 抵抗の温度依存性が小さいことが報告されている¹⁾。そこでこの温度依存性の物理機構を解明するた めに、CNT-Cu の固有振動解析を行った。

そのためには、ダイナミカルマトリクス導出にはユニットセル内の原子一つ一つを3次元方向に動 かした時の全原子にかかるストレスを計算する必要がある。また、事前に精度よく構造全体を緩和し ておく必要があり、全体として大きな計算量を要する。本研究では前節や本節で扱った100原子以 上から成る銅 CNT 複合材料のダイナミカルマトリクスを ES2 にて計算した。例として、炭素原子 140 個に3 個の銅原子が吸着した系の場合、4 ノードで約 170 時間の計算を要した。以下に取り上げ る炭素原子 100 個+銅原子 32 個の系の振動解析と含め、これら一連の構造緩和・振動解析が主要な 計算量を占めた。

銅原子 32 個が CNT 周辺に緩和された構造の振動数分布は図 3.4-1 のように得られた。赤線がこ の銅 CNT 複合材料(図中の(5,5)CNT + Cu 32 個の表記)の分布で、青線が単体(5,5)CNT の分布、 黒線は fcc に配置した銅個体の分布である。比較してわかるように fcc 銅の振動数域と、単体 CNT の 振動数域が互いに分離している。これを反映し て、CNT-Cuでは低振動域が主に銅原子由来、 高振動域がCNT由来と理解できる。これは、 銅原子は弱く、炭素原子は強く束縛されている ことに起因しており、銅原子が固いCNTと結 合することで、銅のみの場合に比べてより強固 に空間に固定される可能性がある。高温時にお いては、Bose分布に従って熱揺らぎを構成す る振動成分の中心がより高周波数モード側に シフトするため、多くの振動を耐熱性の高い CNTが担当することが期待される。

図 3.4-2 は単体 CNT に銅原子 32 個を吸着 し構造緩和後に振動解析を行ったものである。 図中の茶色が銅原子、黄色が炭素原子を表し、

図 3.4-1 固有振動モードの振動数分布。32 原子から成 る銅クラスターが CNT 表面に吸着した系(赤 線)と単体 CNT (青線)の比較。黒線は fcc 配 置の銅結晶のもの。

青矢印は各固有振動における原子の振動の方向、meV単位の数値は固有振動数を示す。個別の振動モードに着目すると、銅クラスターのみが振動するモードと CNT のみが振動するモードの中間に両者が同時に振動するモードも見つかった。(図 3.4-2 (真中))

これらのシミュレーション結果から次のことが推論される。同じ温度で比較した場合、エネルギー 等分配則によると、強く結合している物質ほど格子振動が抑制される。そのため、共有結合をしてい る炭素原子の方が銅原子よりも同一温度では格子振動の振幅が小さいと考えられる。図 3.4-2のシミュ レーション結果を見ると、14.3[eV] 近傍の固有振動数で CNT と銅クタスターとが共に振動するモー ドが存在することがわかる。これらのモードは CNT-Cu の固有振動モードの中ではエネルギーが低い モードなので、低温から高温までのすべての温度領域にわたり、格子振動の特性を支配するモードで ある。この CNT と銅クラスターとが共に振動するモードでは、格子振動の振幅が銅原子よりも小さ い炭素原子も振動するため、銅の振幅は銅クラスターだけのときに比べて抑制されると考えられる。 このように、CNT-Cu では銅クラスターに比べて全温度領域にわたり格子振動の特性を支配するモー ドで銅原子の振幅が抑制されるので、それに伴い電子の格子散乱も起こりにくくなり、電気抵抗の温 度依存性が緩やかになると推論される。これは CNT-Cu における実験で観測されている電気抵抗の温

今後は電子-格子相互作用を加味した電気抵抗計算を進めることで「熱振動を考慮」した伝導解析 を行い、上記の予想を検証していく予定である。

4. まとめ

CNT-Cuでは、高温においては電気伝導性が低下しないという素晴らしい性能が実験で得られてお り、その要因を解明するために、地球シミュレータ上で第一原理計算を実行した。その結果として示 唆されるのは、CNTの熱伝導性が非常に良く高温になってもCNT構造は変化せず、その構造保持力 により銅の移動を抑える機構である。また電流誘起力の解析結果はCNT-Cuの中では炭素原子よりも 銅原子が移動しやすいことを示唆され、シミュレーションによる電流容量の推定値も実験結果に近い ものが得られた。最後に、CNT-Cuの振動数解析から、CNT-Cuにおける銅の格子振動の振幅は純銅 に比べて抑制されることが予想され、このためCNT-Cuの電気抵抗の温度依存性が純銅よりも緩やか になると推論した。このシミュレーション結果に基づく推論は実験結果と良い整合性を示している。

地球シミュレータを用いたこれらのシミュレーション結果により、CNT-Cuでの電気伝導の機構に 対して多くの知見を得ることができ、この材料の機能発現に必要な因子の特定に一歩近づく成果を出 すことができた。今後、この方向での研究を進めることで、CNT-Cuが次世代ナノ配線素材として実 用化され、様々な分野での応用デバイス開発に繋がるよう研究を進めていきたい。

参考文献

- 1) C. Subramaniam et al., Nature Communications, DOI: 10.1038/ncomms3203 (2013).
- 2) S. Nishino and T. Fujiwara, J. Mol. Model., 19 (2013) 2363.
- 3) P. Koskinen and V. Mäkinen, Comp. Mat. Sci., 47 (2009) 237.