2006 Announcement of Research Positions for Frontier Research Center for Global Change (FRCGC)


Please mind that following information is run as a reference. Applications for those positions have been closed.

1. Objectives of FRCGC  
Global changes, such as global warming and climatic anomalies, are serious problems which affect the ecosystem of nature and the future of human beings. Predicting global change through better understanding of these global phenomena are pressing issues. At FRCGC we attempt to understand the complicated interactions among the atmosphere, ocean and land surface and to develop models capable of more accurate simulation of global scale phenomena. To accomplish these objectives, we propose the following research assignments, and invite excellent foreign as well as Japanese research scientists for an intensive period of research.

2. FRCGC and related organizations
FRCGC is a research center within the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) which was established April 2004 by transformation of the former FRSGC. It is one of the three sister Centers which includes Frontier Observational Research System for Global Change and the "Earth Simulator", Center which was completed in March 2002. Researchers at FRCGC can access the Earth Simulator, the world's fastest supercomputer.

3. Research Programs and applicantsrequired
In the coming fiscal year, we invite applicants for six research programs (Climate Variations, Hydrological Cycle, Atmospheric Composition, Ecosystem Change Global Warming, and Global Environment Modeling).

(1) Climate Variations Research Program
Climate Variations Research Program aims at understanding physical processes of various oceanic and atmospheric phenomena related to ocean climate variations in order to contribute to enhancing predictability skills mostly in the Asia-Pacific sector.Efforts will be particularly devoted to enhancing our level of understanding of ocean climate variations from seasons to decades.Among those phenomena are the Kuroshio variations, the climate regime shift in the northern North Pacific, the El Nino/Southern Oscillation and the Indian Ocean Dipole (IOD).Both oceanic and atmospheric data will be intensively analyzed, together with simulations using models of varying degrees of freedom.This program is also interested in interdisciplinary climate application studies based on the knowledge accumulated so far in the program in order to contribute to societal needs.It also promotes basic research on geophysical fluid dynamics related to ocean climate dynamics.
As a leading research group on IOD study, now we plan to accelerate its predictability experiments using SINTEX-F coupled model which has been developed in the framework of EU-FRCGC/Japan collaboration. This time we invite applications to strengthen this collaborative activity for short-term climate predictability studies.

Qualification for application
Candidates should hold a Ph.D. (or equivalent) in such fields as physical oceanography, meteorology, geophysical fluid dynamics, climate dynamics or related fields in physics.It is highly desirable that s/he is familiar with using ECHAM, OPA and OASIS which are the major component codes of SINTEX-F in addition to the familiarity with the basic climate data analysis. Reasonable command of spoken and written English is required in this program to communicate on a daily basis with colleagues from various nations.
Successful candidates will be involved as core members of the ongoing SINTEX-F project in order to study IOD-related climate variations and associated predictability.He/she is also expected to participate actively in the international collaboration pursuing the improvement of climate/ocean prediction skill.

(2) Hydrological Cycle Research Program
  Hydrological Cycle Research Program focuses on research activities on the mechanisms of the AsianMonsoon variability and related  energy and hydrological cycle, and their impacts on water resources  issues.  A basic interest includes the issue how the global warming caused by the human activities will and is cause changes in hydrological cycle and its feedback to hydro-climate particularly in Asian-Pacific regions.

As for the diagnostic studies, In addition to existing meteorological, hydrological and land-use data and remote-sensing data (TRMM, NOAA, GMS etc.), we fully utilize special data sets obtained through national and international projects related to WCRP, such as GEWEX Asian Monsoon Experiment (GAME).

As for the modeling studies, we basically utilize GCMs and Regional climate models (RCMs).  Modeling and prediction studies are made on precipitation and other water cycle parameters in Asian monsoon climate from diurnal, intraseasonal, seasonal and interannual time scales. Special attention is paid to model development and improvement of the following items:

·Meteorological / hydrological modeling with various horizontal scales from the continental to the cumulus-convection.
·Modeling of various land surface processes, such as soil moisture, permafrost, snow, vegetation, change of land-use.
·Modeling of evaporation and precipitation processes at the state of mixture of various land surfaces and complicated configuration of the ground.
·Modeling of transport of stable water isotope and other material.
·Diagnostic studies of global/continental-scale energy and hydrological cycle by using the global reanalysis data and satellite data
·Cooperation with the global climate model in the Global Environment Modeling Research Program, FRCGC.
·Improving land-atmosphere coupled processes for predicting hydrological cycle and development of next-generation regional climate model.

Qualification for application
Research Scientist who has expertise and sufficient background on the following fields are highly appreciated:

·GCM modeling on global/continental-scale hydrological processes and Asian monsoon hydro-climate
·Diagnostic studies on global/continental-scale energy and hydrological processes and Asian monsoon hydro-climate
·Modeling of land-atmosphere interactions in Asia/Eurasian continent by using regional climate models.
·Improvement of land-atmosphere coupled models for prediction of hydrological cycle and development of next generation regional climate model.
·Organization and parameterization of meso?-?scale cloud systems by using high-resolution cloud resolving models
·Modeling (Cloud Resolving Model) and data analysis of precipitation/cloud-land surface interactions

(3) Atmospheric Composition Research Program
 This program carries out model prediction research and observational research necessary for it on the variability of atmospheric composition including both long-lived greenhouse gases such as carbon dioxide and methane, and short-lived atmospheric constituents such as aerosols, ozone and their precursors, that cause climate and air quality change directly and indirectly. Future researches are directed toward improvement of precision of source/sink estimates of greenhouse gases and other atmospheric trace species by high resolution inverse modeling, chemistry-climate interaction by ozone and aerosols, inter- and intra-continental transport and hemispherical air pollution, development of chemical weather forecast system combining global, regional and urban scale models, satellite data analysis of tropospheric chemical species aiming at evaluation of climate and environmental impacts of anthropogenic activities in Asia.

Observational research focuses on continuous measurements and intensive campaigns of aerosols, ozone and their precursors in China, an intensive source area of regional air pollution, and in Russia and central Asia, necessary sites for the analysis of hemispherical air pollution. Observation of OH/HO2 radicals which are the ultra-trace species playing a central role in tropospheric photochemistry will also be conducted.

Qualification for application
In order to promote the above studies, we call for scientists who have fundamental knowledge on atmospheric chemistry and have experience or interests in global or regional scale modeling, observational data analysis of greenhouse gases, or atmospheric chemistry observation. We particularly call for scientists who will engage to the following type of research in this fiscal year.

1) Source-sink modeling research of greenhouse gases
To elucidate the cause of temporal and spatial variability and quantify the source-sink of carbon dioxide and other greenhouse gases by using high resolution forward and inverse global transport models.

2) Atmospheric chemistry observation research of aerosols and air pollutant gases
To obtain and analyze basic data for the evaluation of climate and environmental impact of air pollution in Asia through conducting the continuous measurements and participating intensive campaigns for aerosol, ozone and HOx radicals in Japan, China, Russia and central Asia.

3) Chemical-transport modeling research based on emission inventory in Asia
To prepare future emission inventory data of atmospheric trace species in Asia and to participate development chemical weather forecast system or process study of future air quality change in Asia.


(4) Ecosystem Change Research Program
The objective of this Research Program is to investigate the structures and the functions of terrestrial and marine ecosystems with respect to climatic and environmental changes on a global scale.In particular, it focuses on the observation of the spatial distributions of the biome-characteristic species, biomass, NPP, etc., and on the modeling of material flows and interactions within ecosystems and between the ecosystems, and the atmosphere in wide climatic zones in the Asian-Pacific region and also modeling of material cycles in the oceans involving marine ecosystem.

We are facing the scientifically new problem of how the ecosystem responds to the rapid environmental changes such as CO2 increase or global warming, and at the moment we do not know how it can be predicted or assessed.The Framework Convention on the Climate Change aims to predict, assess and prevent the negative effect of climate change to theecosystems.Toachieve these objections, further process is required in modeling of ecosystem structure andfunction, and in the integration of such models to atmosphere and ocean circulation modeling.

The final goal of this research program is to develop models of terrestrial and marine ecosystems and to simulate them.However, like other research programs, it starts from the preparation and the integration of the basic data base and knowledge in the relevant fields.

Qualification for application
Candidates having an interest in modeling of ecosystem structures and functions.In particular, candidates having an interest in modeling of material cycles in the oceans involving marine ecosystem, modeling of interactions between terrestrial ecosystem and atmosphere, in modeling of ecosystem changes responding climate change, and in modeling and observation of spatial and temporal dynamics of ecosystem parameters.

1) Ecosystem - Atmosphere interaction modeling group
Candidates having an interest in modeling of matter flow in terrestrial ecosystem and in modeling ecosystem-atmosphere interaction and modeling of vegetation dynamics from single tree level to global level, and having basic knowledge for their modeling and simulation.

2) Marine biological process modeling group
Candidate having an interest in observation and modeling of marine ecosystems, and having knowledge for marine biological processes, and candidate to be engaged in modeling of material cycles in the oceans involving marine ecosystem.

(5) Global Warming Research Program
   This research program explores the physical, chemical and biological mechanism responsible for global warming and attempt to make quantitative projection of future climate change.It covers three research subjects, i. e., global warming, carbon cycle, and paleoclimate.

1) Global Warming Research
   Using a hierarchy of climate models with various complexities and computational resolutions, the future changes of climate and the physical mechanisms, which are responsible for these changes are studied.For example, using general circulation model of the atmosphere with very high computational resolution, we will explore how those phenomena which are important for climate such as tropical and extra-tropical cyclones and El Nino-Southern Oscillation, are affected by global warming.

2) Coupled Modeling Development
Coupled atmosphere-ocean-land model is an extremely important tool used for studying the highly complex climate system. This program will conduct various numerical experiments using the existing coupled model running on the Earth Simulator. The results will be analyzed and compared with the observational data in order to improve understanding the mechanism of the climate and climate variability. Also, the performance of the model, especially its weaknesses will be evaluated in order to improve the model.

3) Paleoclimate Research
   Using a hierarchy of climate models with various complexities, the mechanisms which are responsible for past climate changes, in particular, the glacial-interglacial transition of climate are studied.For example, we will explore how the massive continental ice sheets were maintained during the last glacial maximum and why they have been reduced to the modern ice sheets of Greenland and Antarctic Continents.Based on this study we will also attempt to determine the future of these ice sheets.

Qualification for application
   The major objective of this program is the predictive understanding of global climate.It seeks those candidates who are interested in modeling study of the research topics identified above.It is desirable that they have basic knowledge of mathematics, physics, chemistry, and biology and the ability to apply them to the study of climate.In particular, the program looks for those who are interested in developing climate models and using them for the study of climate.

(6) Global Environment Modeling Research Program
  The mission of the Program is to develop new climate models, global environmental models and ocean data assimilation systems to be run on the Earth Simulator and study climate phenomena by using these models.

1) The development phase of atmospheric and ocean models have been almost completed.The atmospheric model using icosahedral (quasi-uniform) grid system with horizontal mesh size of 5 km or less can simulate tropical cloud clusters and other mesoscale atmospheric systems explicitly without parameterizations.The ocean model using cubic-grid system with horizontal mesh size of 10 km or less can simulate the mesoscale eddies explicitly without parameterizations.Currently, climate phenomena are analyzed by using these models and improvement of the models are also carrying out.

2) Development of models to include new elements such as aerosols effects on clouds, or global carbon cycle, on the basis of currently existing climate models cooperating with other research programs.Development toward this "Integrated Earth System Model" starts from FY2002 as apart of the MEXT new project.

3) In addition to the above described model development, ocean data assimilation systems are also developed in this program.Four-dimensional variational data assimilation systems, which incorporate satellite and in-situ observational data into numerical models, are the subject of increasing interest.These can provide realistic initial conditions for adequate prediction and also useful re-analysis datasets for accurate estimation of ocean circulation processes.A variational data assimilation system using the adjoint method is the most promising approach in view of the fact that the spatio-temporal coverage of the present measurements for mass and velocity fields which is far from complete.

Qualification for application
Candidates should hold a Ph.D. (or equivalent) in such fields as meteorology, physical oceanography, geophysical fluid dynamics, climate dynamics or related fields in physics.They should have experiences for atmosphere/ocean modeling and will be in charge the following items.

1)-2) Model development group
- Development /improvement of "Integrated Earth System Model"
- Development/improvement of the high resolution atmospheric/ocean model
3) Data assimilation group
- Improvement of the global ocean data assimilation system by using the adjoint method and Kalman filter
- Research and development of high resolution data assimilation system utilizing satellite data and in situ data (TRITON/TAO, ARGO), together with development, processing and analysis of high-quality data set, which enable us to trace the time evolution of El Nino and other phenomena.


4. Research resources and equipments
  A computer system with a multi-purpose server as well as a high performance server capable of vector calculations has been set up at FRCGC.In addition, a network system with access to super computers at Japan Agency for Marine-Earth Science and Technology has been constructed.All FRCGC research scientists are eligible for applying for using Earth Simulator.

5. Qualification for application
1) A person who has a Ph.D. in related fields or who is expected to complete the degree by the date of employment. We also welcome applicants who have the equivalent research experiences.

2) Any nationality, any sex, and any age could be applied. FRCGC has the principle of equality of men and women as it relates to the recruitment of all staff. With a view to achieving a more equitable balance of men and women in all positions, we would like to particularly encourage qualified women to apply.

6. Work place
Frontier Research Center for Global Change,
3173-25 Showa-machi, Kanazawa
Yokohama 236-0001 Japan

7. Contract period
Period of employment is from April 1st 2006 to March 31 2007.Employment contract is renewable every fiscal year depending on the progress of research.Maximum of three years for the post doctoral research scientist and generally maximum of five years for others are expected.
On the expiration, a postdoctoral scientist or a full-time research scientist, whose maximum duration of employment has expired, may be eligible for an additional five years of employment at FRCGC as a full-time research scientist if, 1) his/her accomplishment is highly evaluated throughout the entire period, or 2) the Director-General and Program Director agree that the research scientist is indispensable to the progress of FRCGC research.

8. Treatment

(1) Payment will be decided according to the JAMSTEC regulations.
(2) Traveling expenses will be provided according to regulations.
(3) The participant and JAMSTEC will share the premiums for social insurance and labor insurance according to the current statutory proportion.
(4) Housing lease service is available through the JAMSTEC housing scheme.Eligibility for the housing scheme is subject to the JAMSTEC regulations.
(5) A commutation allowance will be provided.
(6) Holidays and vacations: Saturday, Sunday, public holidays, the year-end and the beginning of the year are holidays.There are annual vacations with pay, special vacations, leave of absence for care and maternity leave.
(7)
Other: i) There are various kinds of subsidy system for personal interests/welfare.
Other:ii) The Execution of Special Business Type Working Hour System is adopted for a full-time research scientist by the labor-management agreement with a worker representative.


9. Method of application

(1) Required documents
a. One copy of research proposal including the research program which you desire to participate in. (A4 size, 1 page)
*Please write research program(s) which you will apply.If you apply more than one research programs, please submit one research proposal for each program.

b. References (recommendations) written by two senior research scientists.
The references should be sent directly from them to Research Promotion Office, Frontier Research Center for Global Change (see 9. (3))
Applicant's name should be written on the envelope.

c. One copy of a resume.
d. One copy of publication list including thesis titles.
Please separate those with referred journals from other publications.

(2) Submission
Documents for the application should be sent by post before the deadline.
*We accept only by post.

(3) Address
Frontier Research Center for Global Change
FRCGC in charge of Human Resource
3173-25 Showa-machi, Kanazawa
Yokohama 236-0001 Japan
TEL: 81-45-778-5672
FAX: 81-45-778-5497
(E-mail:koubo-frcgc@jamstec.go.jp


10. Closing date for application
August 31, 2005 (a postmark on the day is acceptable)

11. Selection and employment
1) Document evaluation and interview will be conducted.
2) Interviews will be conducted in Japanese or English.

12. Screening
1) Incomplete applications may not be accepted.
2) Submitted documents will not be returned to the applicant.
3) A health certificate should be submitted when the employment is informally decided.
4) A letter should be submitted if the applicant withdraws.


13. Notes
1) If you have further inquiries, please refer to Frontier Research Promotion Office (see 9. (3)).
Related information is available on the following home page URL:
http://www.jamstec.go.jp/frcgc/eng/(FRCGC)
http://www.jamstec.go.jp (JAMSTEC)
2) There may be additional announcement of opportunities in the future.
3) JAMSTEC became "Independent Administrative Institution, Japan Agency for Marine-Earth Science and Technology" in April 2004.