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Efficient identification of parameters in numerical models remains a computationally demanding
problem. Here we present an iterative Importance Sampling approach and demonstrate its application
to estimating parameters that control the heat uptake efficiency of a physical/biogeochemical ocean
model coupled to a simple atmosphere. The algorithm has similarities to a previously-developed ensem-
ble Kalman filtering (EnKF) method applied to similar problems, but is more flexible and powerful in the
case of nonlinear models and non-Gaussian uncertainties. The method is somewhat more computation-
ally demanding than the EnKF but may be preferred in cases where the approximations that the EnKF
relies upon are unsound. Our results suggest that the three-dimensional structure of ocean tracer fields
may act as a useful constraint on ocean mixing and consequently the heat uptake of the climate system
under anthropogenic forcing.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Climate models are one of the primary tools through which pre-
dictions of climate change can be made (Meehl et al., 2007). How-
ever, the model results can be highly dependent on the values of
model parameters which are not adequately constrained either
by direct process-based observations or by theoretical arguments,
and therefore can only be estimated by the inverse process of com-
paring the model output to observations of the real world. Such
calibration of models to observational data remains a significant
challenge in climate science, primarily due to the vast computa-
tional challenge it poses. Therefore, a range of approaches have
been developed for more efficient parameter estimation in climate
science in recent years (Annan and Hargreaves, 2007). One such
approach is the ensemble Kalman filter (EnKF; Kalman, 1960;
Evensen, 2003), which has been used for multivariate parameter
estimation in climate models (Annan et al., 2005a). While even effi-
cient ensemble methods such as this cannot easily be applied to
the largest numerical models due to the computational costs, the
development of such methods ensures that we can make effective
use of Earth system models of intermediate complexity [EMICs]
(Claussen et al., 2002).

In this paper we have two main goals. First, in Section 2, we
introduce the new parameter estimation method, which is based
on an iterative Importance Sampling approach. The method can
ll rights reserved.

).
be interpreted as a natural generalisation of our previous work
using the ensemble Kalman filter (Annan et al., 2005a), but is more
accurate and flexible in the case of nonlinear models. We test the
method with some idealised examples in Section 3, which demon-
strates that the new approach is substantially more accurate than
the EnKF for nonlinear problems, and is capable of estimation of
around 10 parameters simultaneously, at reasonable computa-
tional cost. Second, in Section 4, we demonstrate successful appli-
cation of the method to an Earth system Model of Intermediate
Complexity, using identical twin experiments to check the perfor-
mance of the algorithm and investigate the identifiability of ocean
heat uptake efficiency from climatological observations of tracer
fields. We conclude the paper in Section 5.

2. An iterative Importance Sampling method for parameter
estimation

The generic model calibration problem is most naturally consid-
ered as a problem in Bayesian estimation (Bernardo and Smith,
1994). That is, given a prior belief pðxÞ over any uncertain model
parameters x, a model M and an observational data set o from
which we can construct a likelihood function pðojxÞ which de-
scribes the relative probability of the observations for different sets
of parameters, how can we efficiently estimate the posterior prob-
ability density function (pdf) f ðxÞ � pðxjoÞ ¼ pðojxÞpðxÞ=pðoÞ?

The direct Monte Carlo approach based on rejection sampling
(Hammersley and Handscomb, 1964) is a simple and popular
method which has been widely used in climate science in recent
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years (e.g., Knutti et al., 2002). in this approach, we draw samples
from the prior pðxÞ and assign each one a relative probability or
weight defined by wðxÞ � pðojxÞ. This approach is often very
expensive. In particular, the vast majority of samples may be given
negligible weight if the prior is substantially more diffuse than the
posterior, and in this case it may take a very large number of sam-
ples (each one of which requires a model integration to evaluate
the likelihood function) to populate the posterior and achieve rea-
sonable convergence in distribution. While this problem is partic-
ularly severe in high dimensional problems where the ensemble is
liable to collapse to a single sample (Bengtsson et al., 2008), such
particle-based methods may still require uncomfortably large
ensembles in even problems of moderate dimension.

In cases such as this, Importance Sampling may lead to large
improvements (Doucet et al., 2000). In this approach, samples
are drawn not from the prior, but from some ‘‘proposal distribu-
tion” gðxÞ which is believed to approximate the posterior. When
the weights are correctly adjusted for this biased sampling (i.e.,
by using wðxÞ � f ðxÞ=gðxÞ), the final outcome is the same in the
limit of infinite sample size but, for a well-chosen proposal distri-
bution, convergence can be much more rapid in practice. The best
possible proposal distribution would be the posterior itself (for
which w ¼ 1 always), but of course we do not have the ability to
sample efficiently from this distribution.

The method of ‘‘bridging densities” has been proposed as a
means of increasing the efficiency of Monte Carlo sampling in such
situations (Meng and Wong, 1996; Gelman and Meng, 1998; Del
Moral et al., 2006). The basic principle is that given an initial pro-
posal that is some way distant from the prior, it may be more effi-
cient to define some intermediate ‘‘bridging” distribution such that
we can use the initial proposal to generate samples from the bridg-
ing distribution, and then use the bridging distribution as a pro-
posal from which we generate samples from the posterior. For a
suitably chosen bridging density, this can be substantially more
efficient than attempting to directly generate the posterior by sam-
pling from the proposal. The approach generalises directly to a lar-
ger number of bridges, or even an infinite sequence (Neal et al.,
1993; Gelman and Meng, 1998).

One natural approach is to consider the geometric family

/a ¼ g1�af a; 0 6 a 6 1

which transforms smoothly from g to f as a varies from 0 to 1. Even
if it is very inefficient to use g directly as a proposal density for f, if
we select an increasing sequence of closely-spaced ai we can itera-
tively use /ai

as a proposal for /aiþ1
and ultimately reach (or at least

approach in the case of an infinite series) the target distribution f.
The choice of g here may be arbitrary, but in the examples pre-
sented below we use the prior for convenience.

It is well known that in repeated applications of such particle-
based methods, the weights will become increasingly concentrated
on a smaller proportion of the samples, representing a reduction in
effective ensemble size and therefore loss of accuracy (Doucet
et al., 2000). Therefore, some procedure is required to equalise
the weights, and in this paper we use the standard approach of
stratified resampling. In the case of parameter estimation prob-
lems, this itself introduces a further complication. Since the model
parameters are considered fixed and do not evolve in time, strati-
fied sampling will merely result in exact duplicates of parameter
sets which will do nothing to increase the effective ensemble size.
To address this problem, it is common to add some jitter to the
new samples. A convenient choice for the jitter kernel is a scaled
version of a Gaussian approximation to the existing ensemble
spread. However, the addition of jitter in this way inevitably re-
sults in an increase in the variance of the ensemble and loss of
information. To address this issue, West (1993) introduced the idea
of a shrinkage step in which the ensemble of jittered samples is
immediately contracted towards its mean. When the magnitude
of shrinkage is correctly chosen, this restores the variance of the
ensemble to the original (correct) value. It should be noted that
the shape of the distribution is only precisely maintained in the
case of it being a multivariate Gaussian.

We have tested the approach of using bridging distributions
with jitter compensated by shrinkage, but although it works well
in very low dimensional problems we have found it difficult to en-
sure that the ensemble converges to the correct solution for more
than about 3–4 parameters, with tolerable ensemble sizes. The
specific difficulty we have encountered manifests itself as an
over-rapid collapse of the ensemble to a narrow region of parame-
ter space, sometimes referred to as ‘‘filter divergence”. The bridg-
ing distributions as presented above are sequentially nested and
it is difficult for a distribution which is inappropriately over-nar-
row to recover the correct spread, since the addition of jitter (the
only step whereby it can expand) is immediately counteracted by
the shrinkage step. Therefore, we now present a minor variation
of iterated Importance Sampling (IIS) which we have found to work
better in our applications. Instead of using an explicit shrinkage
step which is followed by Importance Sampling to a narrower dis-
tribution, we simply perform the Importance Sampling directly on
the jittered ensemble, but change the weighting function to ac-
count for the extra spread generated by the jitter. As with the stan-
dard shrinkage procedure, this approach is only precisely correct in
the case of a linear Gaussian problem. However, the solutions it
generates are substantially more accurate than the EnKF approach
for the nonlinear problems we have tested, and in contrast to the
conventional method, we have found it to work reliably for at least
10 parameters.

In detail, our modified procedure is as follows. Given an ensem-
ble of samples drawn from the distribution

/ai ;bi
¼ g1�bi f ai

for some ai and bi (which in contrast to the established approach,
are not necessarily equal here), we first use this as a proposal for
g1�bi f aiþ� by reweighting the samples according to f �, where � is a
tunable parameter which we typically set to 0.05 unless otherwise
stated. Resampling with the addition of jitter (with the jitter drawn
from a Gaussian kernel fitted to the ensemble with its variance
scaled by a factor of �) will, at least in the case where the ensemble
truly is a multivariate Gaussian, generate an ensemble which sam-

ples the distribution g
1�bi
1þ� f

aiþ�
1þ� . Defining aiþ1 ¼ aiþ�

1þ� and 1� biþ1 ¼ 1�bi
1þ� ,

respectively, this ensemble now serves as the proposal for the next
iteration. It is easily seen that over repeated applications of these
steps, the sampling distribution converges to g0f 1 ¼ f as desired.
Several applications below also demonstrate the correctness of this
approach. We note that the repeated use of (a scaled version of) the
likelihood function, balanced by expansion of the ensemble around
its mean, is fundamentally the same approach as previously
adopted using the ensemble Kalman filter (Annan et al., 2005b),
with the jitter here taking the place of the variance inflation step
in the previous approach, and the weighting according to the likeli-
hood function taking the place of the analysis step. The main differ-
ence here is that the data here enter the process through weighting
according to the likelihood function, rather than using the Kalman
equations to interpolate (or extrapolate) according to the covari-
ance matrix. Thus, while our new method generally requires a
somewhat larger ensemble to ensure adequate sampling, it has
the benefit of not relying so strongly on the distribution being
approximately Gaussian, and we shall demonstrate the benefit of
this in some applications.

We mention in passing that there is an important difference be-
tween our approach and the iterative resampling approach of West
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(1993), in that we are not attempting to sample the true posterior f
at each stage in our iterative sequence. Thus, we expect our ap-
proach to be substantially less efficient in the cases where we al-
ready have a reasonable proposal distribution (including those
cases where the prior is not much broader than the posterior and
thus can serve as the proposal distribution). However, in many
cases of interest to climate scientists, we have no reasonable pro-
posal density and, as mentioned above, a direct attempt to con-
struct the posterior by rejection sampling from the prior is likely
to fail through an immediate collapse of the sample.
3. Application to idealised problems

3.1. Univariate problem

In order to test the validity and accuracy of this method, we
start with some simple univariate applications for which an accu-
rate solution is easily computed. Our iterative methodology has no
advantage here over a more standard approach, since there is no
curse of dimensionality to address. In Annan and Hargreaves
(2007), a simple nonlinear toy example was used to explore the
performance of the EnKF. Applying the IIS methodology to this
problem generated improved results, with the error roughly halv-
ing (not shown here). However, this problem was unchallenging in
that the posterior pdf was unimodal and the mapping of parameter
Fig. 1. Comparing the performance of IIS and EnKF on a nonlinear problem. Red lines sh
500-member EnKF result, and the lower plots show the IIS result with the same size en
to output was monotonic, so even the EnKF gave rather accurate
results. Here we try a slightly more challenging example where
the output is a quadratic function of the input parameter and has
two local maxima in the observational constraint.

We use one uncertain input x, a model given by

y ¼ x2

and an observation of yo ¼ 25� 50 (all input uncertainties are
Gaussian and quoted at one standard deviation), so there are two
modes in the observational likelihood at x ¼ �5. An off-centre prior
estimate for xo ¼ 5� 10 is used which prefers the positive root, but
which also assigns significant prior probability to the negative one.

As can be seen from the results in Fig. 1, the EnKF performs
rather poorly here. This ensemble is substantially over-dispersed,
with roughly 25% of the samples falling outside the central 99%
probability interval of the correct solution. Encouragingly, the IIS
results show a striking improvement, with the correct overall dis-
persion, the tails of the distribution greatly improved, and a very
modest mismatch in the distributions around their modes. A com-
mon method to quantify the quality of the results is through statis-
tical tests which aim to discriminate between different
distributions, such as the Kolmogorov–Smirnov (K–S) test (Wilks,
1995, Chapter 5.2). Using this test, we investigate how confidently
we can reject the null hypothesis that a finite ensemble was drawn
from the true posterior distribution. Some results are presented in
ow the correct solution, blue show the experimental results. The top plots show a
semble.
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Table 1. With 100 replicates of an experiment using an ensemble
size of 50 members, a large majority of the EnKF results are re-
jected as significantly different at the 1% level, whereas only a
much smaller proportion of experiments using the IIS are rejected
even at the 5% level. When using a 500-member ensemble, the re-
sults are even more marked, with none of the EnKF results appear-
ing at all plausible. This is not due to the distribution changing
shape with the larger ensemble (in fact it does not change detecta-
bly) but simply that with more samples, the bias in the tails of the
results is more apparent and less plausibly attributable to sam-
pling error.

Although these results do clearly indicate the greater precision
of the IIS results, they also highlight a serious limitation of the K–S
test in applications such as this. The K–S test statistic is based on
the maximum deviation of two cumulative distributions, which
will, if the samples really are drawn from the same underlying dis-
tribution, typically occur somewhere towards the median of the
distributions since this is where the sample variance of a cumula-
tive distribution is highest. However, this approach may overlook
substantial differences in the tails of the distributions. A test statis-
tic based on sampling in the tails may indicate a significant differ-
ence in the distributions even when the K–S test statistic fails to
identify them as such. For example, if even as few as five samples
from a sampled ensemble of 50 fall in the extreme tails (outside
the central 99% probability interval) of a given target distribution,
then this is strong evidence that the distributions are distinct, since
(under the null hypothesis that the sample actually was drawn
from the target) such an event can only be expected to occur with
probability � 1%. However, the absolute deviations between the
cumulative distributions, of �0.05 at either end, are not considered
significant by the K–S test, as they would be entirely unremarkable
were they to occur near the mean of the cumulative distributions.
Under circumstances such as these the Kuiper test provides a stif-
fer hurdle to overcome (Press et al., 1994, Chapter 14.3). Using that
test (also shown in Table 1), the probability of results from either
method being considered significantly different from the truth in-
creases, but the IIS method remains markedly superior.

3.2. High dimensional linear problem

Next we test the method on a higher dimensional problem,
more indicative of the input size for which the method is intended.
However, in order to be able to validate the results, we revert to a
linear example where the correct answer can be calculated exactly
via the Kalman equations.

The example we present is very straightforward. We assume n
uncertain input parameters xi; i ¼ 1; . . . ;n for which we have a va-
gue prior estimate. The linear model is a random n�m matrix M
which transforms these parameters into m observed outputs y via

Mx ¼ y

We have a vector of observations yo;j; j ¼ 1; . . . ;m, and wish to
use these to generate an estimate of the inputs x.
Table 1
Results of K–S test and Kuiper test on EnKF and IIS results with two ensemble sizes N.
Values indicate number of times (out of 100 replicates) that the test does not reject at
the given significance level p, that is to say the percentage probability that a single set
of experimental results would be considered statistically indistinguishable from the
correct solution at the p% level (according to these tests).

N p (%) K–S test Kuiper

EnKF IIS EnKF IIS

50 1 22 97 7 91
5 10 87 4 84

500 1 0 93 0 78
5 0 77 0 52
For the results presented here, we set n ¼ 16, this being towards
the high end of the number of parameters that we wish to simul-
taneously estimate. We also use m ¼ 16, in order that the parame-
ters are identifiable from the data (Navon, 1998). Each element in
the model matrix M was an independent draw from the standard
normal Nð0;1Þ. Our prior on x has mean 0 and standard deviation
of 10 for each parameter, assumed independent. The observations
of y are given the values yo;j ¼ j� 8; j ¼ 1; . . . ;n also with indepen-
dent Gaussian uncertainties of magnitude 5.

For this more computationally challenging problem, the choice
of the scaling factor � in the iterative procedure can affect the per-
formance of the algorithm. For a very large value, the ensemble
collapses rather rapidly and may converge to a incorrect solution.
This is due to the curse of dimensionality: if the prior sample is
widely dispersed compared to the posterior, then the posterior
weight will be concentrated on very few members and even the
addition of jitter may not be enough to rescue the situation. Con-
versely, if the scaling factor is very large, then the weights will re-
main nearly uniform and the ensemble will take many iterations to
converge to the true posterior. A reasonable rule of thumb arising
from our experiments is to aim for a effective ensemble size that is
between 50% and 90% of the actual ensemble size, and so in the re-
sults presented here the value of � has been adaptively tuned to
stay within these bounds.

Some typical results (using an ensemble size of 250 members)
are plotted in Fig. 2. It is clear that the IIS has worked correctly
in this case, with the posterior suffering only from sampling error
due to the finite ensemble size. It is worth emphasising the con-
trast in spread between the prior and posterior in this example,
since this is a key motivating factor for the development of this
estimation technique. The typical uncertainty of each input vari-
able in the posterior is around 1/4 that of the prior. Therefore, a na-
ive Monte Carlo sampling strategy would be hopelessly inefficient,
as a sample from the prior has a probability of around
ð1=4Þ16 ’ 2� 10�10 of lying in the posterior. This problem is cer-
tainly rather more challenging than the typical application in cli-
mate science, but it gives an indication of the problem and the
effectiveness of the method. The IIS method presented here has
successfully populated the posterior region, using many orders of
magnitude lower computational effort than direct sampling would
have required.

When attempting this same problem with substantially smal-
ler ensembles, it was not possible to reliably prevent collapse of
the ensemble, and the 50-member ensemble results (also plotted
in Fig. 2) illustrate a typical failure. Interestingly, the EnKF ap-
proach is much more robust to such failure (not shown here),
presumably through its ability to systematically interpolate and
even extrapolate from the prior samples towards the posterior
region, rather than relying on random jitter to perturb the loca-
tions of the samples. Therefore, in a linear application, the EnKF
remains a superior choice. However, true linearity is rare in prac-
tical applications.
4. Application to a 3D EMIC

We now perform an identical twin experiment to demonstrate
the application of the method to an earth system model of inter-
mediate complexity, the Grid ENabled Integrated Earth system
model (GENIE: www.genie.ac.uk) (Lenton et al., 2007), which is
based on the fast climate model of Edwards and Marsh (2005). Pre-
viously, we have used the EnKF methodology for estimating phys-
ical parameters (Hargreaves et al., 2004) or biological parameters
(Ridgwell et al., 2007) separately in this model. Here we demon-
strate simultaneous estimation of physical and biological parame-
ters, using a variety of tracer data.

http://www.genie.ac.uk


Fig. 2. Testing the IIS on a 16-dimensional problem. The top row of plots shows three of the input parameters, the lower row shows three outputs. The cyan curves show the
prior (only shown to ±20), red indicates the true posterior, dark blue solid histogram shows results from a 250-member IIS calculation and the dotted blue histogram gives
results from a 50-member ensemble which failed to converge correctly.
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4.1. Scientific motivation

One important model uncertainty, which is particularly rele-
vant to ocean science, is the rate at which the surface warming
(due to anthropogenic forcing) is mixed with the ocean interior.
This is a first-order control on the rate of anthropogenically-forced
climate change (Hansen et al., 1985). If this mixing rate is low, then
the surface climate will be in near-equilibrium with the forcing,
implying both relatively little committed warming at current levels
of greenhouse gases, and a low rate of thermosteric sea level rise.
If, however, ocean heat uptake is strong, then the thermal inertia
of the ocean will allow a large radiative disequilibrium and sub-
stantial (but gradual) committed warming. Thus, this is a critical
property of the climate system for understanding and addressing
climate change.

Currently, there is significant uncertainty concerning estimates
of mixing of the global ocean. The canonical figure of around
10�4 m2 s�1 for the overall effective diapycnal or vertical diffusion
parameter (Munk, 1966) has endured fairly well (Li et al., 1984;
Hoffert et al., 1985), although one more recent energy balance
analysis suggests a rather lower value (Huang, 1999). These analy-
ses all contain substantial, but poorly-quantified, uncertainties in
the quantification and interpretation of the various energy sources.
Thus, they do not provide adequate information for probabilistic
analyses and predictions.

More recently, explicitly probabilistic analyses of ocean mixing
have been performed by comparing ‘perturbed parameter’ ensem-
bles of model simulations to observational estimates of warming
over the 20th century (Knutti et al., 2002; Forest et al., 2006).
Due to computational limitations, these analyses have generally
been restricted to the use of greatly simplified models where the
ocean dynamics are limited, and mixing into the deep ocean is pri-
marily determined by a single global vertical diffusion parameter.
It is not straightforward to directly equate these parameters to
those used in more complex ocean GCMs, since these latter models
often include a range of mixing processes (including convection
and wind stirring near the surface), and the diffusion models
may also incorporate spatial patterns of variable mixing. However,
one striking, and perhaps worrying, aspect of the probabilistic
analyses is that they have often assigned fairly high probability
to values of global ocean mixing that are substantially lower than
those commonly obtained in GCM simulations, with strong impli-
cations for projections of climate change (Knutti and Tomassini,
2008; Sokolov et al., 2009).

There have been very few investigations into this topic using
ensembles of more complex ocean models, due primarily to the
substantial computational cost this would entail. Collins et al.
(2007) considered a small ensemble of ocean parameter perturba-
tions with the fully coupled atmosphere–ocean GCM HadCM3, but
could only obtain a rather small range of ocean mixing. Thus, it re-
mains a high priority to reconcile their results with those of Soko-
lov et al. (2009), and to determine which provides a more credible
description of reality.

The model we use here, while computationally much cheaper
than a full GCM, still has a fully three-dimensional representation
of the ocean and is capable of reproducing the physical and bio-
geochemical properties of the global ocean reasonably well
(Hargreaves et al., 2004; Ridgwell et al., 2007). The combination
of computationally affordable model and efficient multivariate
parameter estimation technique enables us to use various data
sources for calibration of the model parameters. Thus we expect it
to be a powerful tool in better constraining current estimates of
ocean mixing.

4.2. Model

While the model is largely the same as used in previous work,
there has been some further development which is documented
here for completeness. For the physical module, we use the
GENIE-1 configuration of 2D energy-moisture balance atmosphere
and 3D frictional geostrophic ocean with dynamical sea ice. The
ocean module is based on the 16 layer version of Singarayer
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et al. (2008). However, instead of modifying atmospheric temper-
ature diffusion around Antarctica to create an appropriate cooling
of high Southern latitudes in the simple energy-moisture-balance-
model (EMBM) atmospheric component, we apply a zonally and
annually averaged planetary albedo derived from a fully coupled
GCM present-day simulation (Ridgwell et al., 2009). We also use
the stratification-dependent diapycnal diffusion parameterisation
of Oliver and Edwards (2008).

A coupled marine biogeochemistry module based on Ridgwell
et al. (2007) calculates the redistribution of tracer concentrations
due to processes other than transport by the circulation of the
ocean, namely: air–sea gas exchange, the removal of nutrients, car-
bon, and alkalinity from solution as a result of biological activity in
the sunlit surface ocean layer, the vertical export of particulate
matter and its remineralization in the ocean interior, and the
remineralization of dissolved organic matter and associated con-
sumption of dissolved oxygen.

We employ a seasonal scheme for biologically-induced export
out of the surface ocean based on a dual nutrient limitation of pro-
ductivity by PO3�

4 and dissolved iron ([Fe]) derived from previously
published schemes (Doney et al., 2006; Parekh et al., 2005, 2006;
Ridgwell, 2001). This differs from that described by Ridgwell
et al. (2007) where it was used for an EnKF-based assimilation of
marine observations, in the following ways:

1. A co-limitation of total dissolved iron on export production
added, using the law of the minimum following Ridgwell
(2001) and assuming a half-saturation constant for iron of
0.1 nmol kg�1.

2. The effects of sub-optimal ambient light levels is implemented
following Doney et al. (2006), using incident the shortwave
radiation incident at the ocean surface calculated by the climate
model (Edwards and Marsh, 2005) and assuming a half-satura-
tion value for light of 20 W m�2. We have added a marine iron
cycle based on Parekh et al. (2005, 2006), but deviating as
follows:
(a) We link the phosphate and iron cycles via an organic

matter Fe:C Redfield ratio that is a function of dissolved
iron availability, taking the average of the two (diatom
and non-diatom) parameterizations of Ridgwell (2001).

(b) For iron inputs to the ocean we take the atmospheric tra-
cer transport model generated dust field of Mahowald
et al. (1999), and uniform iron content in dust of
3.5 wt.%. However, we depart from the common assump-
tion regarding a uniform solubility of iron in dust and
instead allow solubility to vary inversely to dust loading
consistent with laboratory experiments and observations
(Ridgwell, 2001) and with a solubility that scales inver-
sely to the square root of dust loading (flux) (Baker and
Jickells, 2006).

In addition to several parameters controlling aspects of the
ocean carbon cycle (and hence dissolved PO4, ALK, and O2 distribu-
tions) that we allowed to vary in previous EnKF-based assimilation
work (Ridgwell et al., 2007), we now include the scavenging rate of
dissolved iron from the water column, and the overall (global
mean) solubility of iron in dust.

4.3. Data

Although the results presented here are from an identical twin
experiment where synthetic data are generated from a model run,
we wish in the future to apply the method to real data, and there-
fore the choices of data are based on those for which observational
analyses are available.
The physical data we use are climatological mean fields of ocean
temperature and salinity, for which global analyses such as Conk-
right et al. (2002) are available, and the atmospheric temperature
and relative humidity which could be derived from the NCEP
reanalysis (Kalnay et al., 1996). Previous work suggests that these
data can constrain the ocean circulation to a reasonable state (Har-
greaves et al., 2004), although a detailed quantification of the
implications for heat uptake has not been performed.

In our previous marine biogeochemistry data assimilation
experiment (Ridgwell et al., 2007) we utilised observed 3D distri-
butions of phosphate (PO4) (Conkright et al., 2002) and alkalinity
(Key et al., 2004) in the ocean, to constrain model parameters con-
trolling the marine carbon cycle. In this, observed fields of PO4 help
constrain the rates and distribution of PO4 uptake at the ocean sur-
face, together with the penetration depth of particulate organic
matter before remineralization and release of PO4 back to the
ocean. Alkalinity (ALK) distributions place constraints on the pro-
duction and dissolution of the calcium carbonate (CaCO3) mineral
shells and (skeletons) in the ocean. The distribution of both these
tracers is affected by ocean circulation. In this study we add a fur-
ther 3D field of dissolved oxygen (O2) (Conkright et al., 2002). This
is controlled not only by the remineralization of organic matter
and hence bacterial consumption of oxygen in the ocean interior
as well as ocean circulation, but is also sensitive to ocean surface
temperature and residence time as O2 is rather more soluble in
colder waters and will reach equilibrium with the atmosphere only
in relatively stratified conditions. We do not consider observational
uncertainties in these tests.

4.4. Parameters

The physical and biological parameters we chose to vary are
listed in Table 2, along with their prior 2.5–97.5% ranges. The phys-
ical parameters that we vary (shown in Table 2) are the subset of
those used, and described in more detail, in previous work (Annan
et al., 2005a), which were found to be most influential on model
behaviour. For the atmospheric physics, ‘‘Q” and ‘‘T” here refer to
moisture and heat, respectively. The fresh water flux adjustment
(FWF) from Atlantic to Pacific, a standard procedure in EMBM-type
models, is implemented here as a scaling factor on the standard
0.32 Sv figure of Oort (1983) rather than as an absolute value.
Although presented here as an atmospheric parameter, this flux
acts directly on the ocean where it strongly influences the meridi-
onal overturning circulation. The prior distributions were defined
as Gaussian either in the variable or its log (for those parameters
where a skewed distribution with a 50th percentile closer to the
lower end was desired).

4.5. Experimental details

In order to validate the method and investigate the identifiabil-
ity of the parameters and physical behaviour of the model, we
present the results from identical twin tests here. In this case, a
truth run was selected that had a reasonably realistic overall phys-
ical and biogeochemical state from a 256-member latin hypercube
ensemble (McKay et al., 1979). As in previous experiments, the
physical observations we used consisted of climatological observa-
tions of three-dimensional ocean temperature and salinity, and the
two-dimensional field of atmospheric temperature and relative
humidity. For the ocean biogeochemical model, we use 3D fields
of alkalinity, oxygen and phosphate.

Although in an identical twin test it may be possible, in princi-
ple, to identify the parameters to essentially arbitrary precision,
this will not be the case in any practical test with real data, since
model inadequacy and observational error will always limit the
precision with which the model can match the data. Thus we delib-



Table 2
Prior and posterior distributions of the parameters, and the value used for the truth run. Log-normal distributions were used for the parameters prefixed by ‘log’.

Parameter Prior Posterior Truth

2.5% 97.5% 2.5% 97.5%

Oceanic physics
1. log isopycnal diffusion (m2 s�1) 250 4000 615 3700 1815
2. log diapycnal diffusion/105 (m2 s�1) 0.46 26.7 1.3 16 4.54
3. 1/friction (days) 0.91 4.5 2.25 3.63 3.29

Atmospheric physics
4. T diffusion amplitude/106 (m2 s�1) 3.82 9.90 4.85 8.14 6.41
5. log Q diffusion/105 (m2 s�1) 0.52 26 1.01 11.3 7.44
6. FWF adj (�0.32 Sv) 0.5 2.1 0.63 1.64 1.25

Oceanic biogeochemistry
7. log PO4 half-saturation � 106 (l mol kg�1) 0.5 3 0.69 2.22 0.88
8. Initial POC export fraction 0.03 0.07 0.033 0.07 0.066
9. log e-folding POC depth (m) 225 900 235 520 352
10. Initial CaCO3 export fraction 0.25 0.65 0.30 0.61 0.50
11. log Fe solubility 0.002 0.008 0.002 0.0075 0.064
12. log Fe scavenging rate 0.4 1.6 0.4 2.2 0.62
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erately allow for a substantial model-data mismatch in our likeli-
hood function, which is based on a simple sum of squares similar
to that of Murphy et al. (2004) and Edwards and Marsh (2005)
(equivalent to assuming all observational uncertainties are inde-
pendent and Gaussian). In detail, we split the ocean data into four
domains vertically (of four levels each), and used a cost function of
the form

P
i

P
jaiðxi;j � oi;jÞ where ai; i ¼ 1; . . . ;N is a scaling factor

over 22 disjoint subsets of the data (20 ocean, 2 atmosphere) and
j indexes the spatially discrete data points in each subset. The ai

were used to normalise the contribution of each component of
the cost function to the overall total, by choosing values that set
each term in the sum to a value of 1 when the standard control
model (not the ‘truth’ run in this experiment) was compared to real
data. In other words, we are defining the model inadequacy to be
the level of mismatch obtained by the control model, which then
determines the range of uncertainty that is acceptable for the
‘‘best” set of parameters (where ‘‘best” here is used in the Bayesian
sense: see (Rougier, 2007) for a more detailed description). In any
realistic application the choice of cost function may have to be con-
sidered in more detail, but here we primarily wish to check that
the algorithm works effectively and whether the data may be
informative on the model behaviour.

Even though this model is computationally cheap, it would still
be challenging to integrate it for its full equilibration time scale of
O(2000) years at each iteration. Thus we rely on the observation
that adding modest amounts of jitter to the model parameters does
not greatly upset the quasi-equilibrium balance of the model state,
so that only a more moderate period of integration (we use
200 years here) is required to restore a near-equilibrium state.
We checked the validity of this approximation by integrating the
final ensemble on for a further 5000 years, and found that the
changes were indeed very minor across the ensemble as a whole.
Thus the 30 iterations of the method that we performed requires
6000 years of integration time, which is only a small multiple of
the spin-up time of the model itself. This behaviour is comparable
to what was previously found for the EnKF applied to the same
model (Annan et al., 2005a). A possible improvement for future
applications would be to perturb the full state according to the
covariance matrix, rather than only adjusting the parameters in
isolation.

Gregory and Mitchell (1997) defined the ‘ocean heat uptake
efficiency’ j ¼ DF

DT to be the heat uptake flux to the deep ocean DF
divided by the surface temperature anomaly DT. Although this is
not a fixed parameter of the climate system, it is a reliable diagnos-
tic over a period of strongly increasing forcing such as idealised 1%
pa CO2 enrichment experiments or more realistic socioeconomic
emissions scenarios. In order to provide a direct comparison with
the j values calculated by Collins et al. (2007) for their ensemble
of HadCM3 results, and also by Raper et al. (2002) for the CMIP3
ensemble, we also perform 1% pa CO2 enrichment experiments.

4.6. Results

The ensemble is initialised as a 255-member latin hypercube
across the prior parameter ranges listed in Table 2. As expected,
the climatologies of the samples provide a very poor match to
the ‘‘truth” model. However, we can see from Fig. 3 that the final
marginal parameter distributions all include the true values and
are generally more precise (lower spread) than the initial guess.
Several of the marginal distributions are constrained to values
markedly closer to the true parameter value, and none are signifi-
cantly worsened. We can check that the posterior ensemble in-
cludes the truth by calculating the v2 statistic based on the
Mahalanobis distance ðx0 � �xÞT C�1ðx0 � �xÞ where x0 is the vector
of true parameters, �x is the ensemble mean and C is the covariance
matrix of the ensemble. Essentially, we are checking whether the
truth can be considered as a member of the ensemble. This statistic
remains well below the 5% significance level for the posterior
ensemble, indicating that even though the ensemble has narrowed
considerably in the multidimensional parameter space, it still con-
tains the correct answer. The fit to the data for the posterior
ensemble members (as indicated by the cost function) is also sub-
stantially improved, with them being generally comparable to or
better than the best members of the prior sample. Therefore,
although we do not have an analytical solution to compare with
in distribution, the method does appear to have worked well. A
number of alternate tests, with slightly different parameter sets
and observational constraints, also generated similarly good re-
sults (not shown here). However, when we tried to estimate as
many as 20 uncertain parameters, the experiments failed through
ensemble collapse (filter divergence), with the v2 test strongly
rejecting the hypothesis that the ensemble contained the truth.
Thus, this method is still limited to problems of moderate dimen-
sionality, and we do not claim to have eliminated the general prob-
lem described by Bengtsson et al. (2008). However, our iterative
approach has helped to push the boundary of which problems
can be reasonably attempted.

Although the residual uncertainty in the posterior estimates of
some parameter values seems substantial, all parameters exhibit
several significant pairwise correlations with other parameters,
shown in Table 3. Thus, although many of the parameters cannot
be individually identified with high precision, the posterior is con-



Fig. 3. Prior and posterior distributions for the 12-parameter experiment described in the text. True parameter values are indicated by the vertical lines. Prior is cyan
histogram and posterior is dark blue.

Table 3
Pairwise correlations of parameters with each other and also with the transient climate response TCR. Parameter ordering is as for Table 2. Values that are significant at the 1%
level are indicated in bold.

2 3 4 5 6 7 8 9 10 11 12 TCR

1 0.01 0.30 0.36 0.31 �0.24 0.10 �0.12 �0.32 0.08 �0.17 0.09 �0.14
2 �0.26 0.04 0.28 �0.11 0.26 �0.01 �0.00 0.21 �0.13 0.13 �0.11
3 �0.10 0.16 0.05 0.24 0.22 �0.01 0.10 �0.05 �0.13 �0.08
4 �0.08 �0.42 0.00 0.20 �0.17 0.06 0.01 0.24 �0.28
5 �0.16 0.19 �0.08 0.06 0.19 �0.19 0.09 �0.12
6 �0.19 0.02 �0.17 �0.17 �0.01 �0.02 0.29
7 0.06 �0.10 �0.02 0.05 �0.20 �0.12
8 �0.36 0.00 �0.13 0.14 0.00
9 0.51 0.05 0.07 �0.08
10 �0.28 0.21 �0.23
11 �0.42 0.14
12 �0.18
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strained to a relatively small region of the multivariate parameter
space where the resulting model behaviour is reasonable.

The transient warming for the prior and posterior ensembles
are presented in Fig. 4. The prior ensemble has a fairly broad spread
in transient climate response (TCR: warming observed after 70
years of 1% pa CO2 enrichment) with a 5–95% range of 1.91–
2.62C, even though the equilibrium sensitivity is essentially fixed
at close to 2.9C for all samples. However, the posterior ensemble
range of TCR is reduced by a factor of more than three compared
to the prior, with the range of 2.13–2.36C clustered tightly around
the true value of 2.21C. The 5–95% range of effective heat uptake
efficiency j of the ocean is 0:47—0:85 W m�2 K�1 in the prior, nar-
rowing substantially to 0.57–0.69 in the posterior. The true value
here is 0:64 W m�2 K�1.

Our ensembles reveal some interesting relationships between
the ocean state and the ocean heat uptake. The dominant relation-
ship, which we might expect on direct physical grounds, is that
there is a strong correlation in the prior of around 0.85 between
the stratification of the ocean (as measured here by the difference
between surface and mean ocean temperature) and the TCR, and
an equally strong (but negative) correlation between stratification
and j. This is perhaps not surprising since one would expect strat-



Fig. 4. Results of a 70 year 1% per annum CO2 enrichment experiment, showing global mean surface temperature anomaly. Prior and posterior 5–95% ranges are indicated in
cyan and dark blue, respectively. Output of the truth run is shown in red.
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ification to be strongly linked to mixing (at least if confounding
factors such as deep water production do not vary too much).
The relationship is weakened in the posterior (although still highly
significant), perhaps because the range of outputs spanned by the
ensemble is greatly reduced and thus the ‘noise’ of unrelated fac-
tors can play a larger role. There is also a negative correlation be-
tween the oxygen concentration in the ocean surface layers and
the TCR, predominantly due to the direct solubility effect of the
warmer (colder) ocean surface associated with weaker (stronger)
mixing. The correlations between individual parameters and the
TCR (also shown in Table 3) show that all of the biological param-
eters are correlated with various physical parameters, and two of
them are directly correlated with the transient response. None of
the correlations with the TCR reach a value of 0.3, so the overall
narrowing in response is not directly controlled by any single
parameter but instead emerges as a property of the climate system
as a whole.

These encouraging results suggest that the climatological state
of the ocean as determined by both biological and physical tracer
distributions may be a useful constraint on transient ocean heat
uptake, although more work is undoubtedly required in order to
translate this idealised test into to robust practical results.

4.7. Discussion

Although our identical twin experiment precludes detailed
quantitative analysis, our results exhibit interesting contrasts with
previous model-based analyses of ocean heat uptake. Sokolov et al.
(2009) did not explicitly present an ocean heat uptake efficiency
for their results, however their posterior estimate of effective diffu-
sivity assigns high probability to values that are very low com-
pared to values obtained for modern GCMs. This implies that
their pdf for ocean heat uptake efficiency would include values
rather lower than those provided by GCM projections. Collins
et al. (2007), however, found that the parameter perturbations
they made in the HadCM3 model only resulted in modest changes
to the transient response. There are several possible interpreta-
tions of these results. The Sokolov et al. (2009) results may have
an exaggerated range of uncertainty due to their choice of very
broad prior and little data to constrain the result. In particular, they
admit that both the extremely high and low values of ocean mixing
parameter that they allow in their prior cannot support the ob-
served global meridional overturning, but they did not use this
information in their probabilistic analysis. The only data that they
used which directly relate to the ocean is the observed ocean
warming, which is known to provide only a rather weak constraint
on mixing (Lindzen, 2002).

Conversely, the parameter perturbations in the HadCM3 model
may have been too small to fully represent the uncertainty in their
true values. Furthermore, these perturbations were applied indi-
vidually, and it seems inevitable that multivariate perturbations
across the same ranges would have generated a wider spread of re-
sults. It is therefore encouraging to see that our prior ensemble
covers such a wide range of responses, implying that our model
is fundamentally capable of simulating both very high and low
overall mixing rates, with our prior 90% range of ocean heat uptake
efficiency (0.47–0.85) being broader than the full range obtained
from modern ocean GCMs of around 0.6–0.8 (Raper et al., 2002),
let alone the even more restricted range of 0.55–0.74 obtained by
Collins et al. (2007). Thus, there does not appear to be anything
inherent to the model structure that artificially restricts the range
of mixing rates. We emphasise that the use of a fixed atmospheric
feedback (equilibrium sensitivity) in our experiments does limit
the range of transient climate response, so our results cannot be di-
rectly interpreted in terms of future climate change. Nevertheless,
we see that even though individual parameters are not all tightly
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constrained, the tracer distributions have provided a highly effec-
tive constraint on the overall ocean heat uptake. This result sug-
gests that a practical application with real climate data could
provide a significant improvement on recent predictions of climate
change. We also plan in the future to consider transient simula-
tions with realistic boundary conditions for modern anthropogenic
tracers such as CFCs and radiocarbon from nuclear bomb tests. It is
likely that such data will also prove to be valuable in constraining
the dynamical behaviour of the ocean, as they directly relate to the
penetration of a surface influence over the multidecadal time scale.
However, the current implementation of the parameter estimation
method is limited to equilibrium simulations.
5. Conclusions

We have presented a simple but effective method for parameter
estimation in moderately high dimensional problems, based on an
iterative Importance Sampling approach. The method presented
here shows a clear improvement for nonlinear applications, com-
pared to the ensemble Kalman filtering method which has been
previously used. In (near-)linear problems, both methods generate
good results, and the EnKF is more efficient in computational
terms. However, in more strongly nonlinear applications, the
Importance Sampling method is substantially more accurate. The
method appears to generalise to problems of moderate dimension-
ality, as typically encountered in climate science, where direct
sampling is computationally prohibitive. The combination of our
efficient method together with a reasonably realistic ocean model
allows us to use physical and biogeochemical tracer data to con-
strain the dynamics of the ocean circulation for the first time.
These data limit the model to a relatively small part of the multi-
variate parameter space which strongly constrains the transient
climate response. It therefore appears that observations of climato-
logical tracer distributions in the ocean are informative about its
role in the rate of global warming via heat uptake.
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