New Figures !

  • Back Trajectry

  • INDEX
    red < 600
    green 600-800
    blue > 800

    Arg. Is. の地上降水量の時系列(NCEP 6h)を見て多い時を選びました.
    降水の多い日(降水量の単位が1桁大きい?)
    Low phase の時は100m以上,High phase の時は300mm以上を選びました.
    でも,結果はほとんど同じですね.

    p_sfc (Low-phase)


    p_sfc (High-phase)


    q (Low-phase)


    1980 1986

    q (High-phase)


    1985 1989

    GNIPの降水量はほとんど同じでしたが, NCEPでは明らかに,Lowに比べて,Highの方が降水量が多い.


    NCEP 1979-95
    Low 1979, 80, 86, 87
    High 1983, 85, 88, 89
    同位体の差が大きい,5-8月の平均です.

    1. T,UV Anomaly (High, Low-Mean)
    2. T,UV (Composite)
      T,UV (High-Low)
      だいぶ変わってしまいました.

    3. Sea Ice Anomaly (Polar)
    4. Sea Ice (High-Low)

    5. E-P
    6. E-P (High-Low)
    7. UQ
    8. UQ (High-Low)
    9. VQ
    10. VQ (High-Low)
    11. div(UQ,VQ)
    12. div(UQ,VQ) (High-Low)

    13. LHTFL
    14. LHTFL (High-Low)
    15. PRATE
    16. PRATE (High-Low)

    17. Water Balance
      Low High
      Areas 55-65S
      90-110W
      55-65S
      70-90W
      65-75S
      70-90W
      55-65S
      90-110W
      55-65S
      70-90W
      65-75S
      70-90W
      UQ 5.41
      (69.63)
      6.22
      (80.08)
      3.43
      (30.22)
      8.81
      (113.32)
      8.22
      (105.76)
      5.15
      (45.32)
      VQ -1.40
      (-18.03)
      -0.77
      (-9.85)
      -0.47
      (-6.09)
      -2.77
      (-35.60)
      -2.73
      (-35.07)
      -2.96
      (-38.07)
      LHTFL 1.341.650.34 1.521.380.39
      PRATE 2.052.172.01 2.662.503.36
      E-P -0.80-0.82-1.04 -1.16-1.30-1.87
      E-P+PRATE 1.251.350.98 1.501.201.49
      (UQ+VQ+LHTFL) 9.159.644.24 13.112.338.50
      PRATE/(UQ+VQ+LHTFL) 0.220.230.47 0.200.200.40

      以上より,移流はHighの方がかなり多いが, 蒸発量は違いが無いことが明らかとなった.
      また,降水捕捉率[PRATE/(UQ+VQ+LHTFL)]も20,23%, 40,47%程度で, あまり変わらない.

    18. Water Balance (New!)
    19. 領域はここです.

      Low phase                             |High phase
      --------------------------------------|--------------------------------------
      -55S~-60S                             |-55S~-60S
               170W~130W  130W~90W  90W~50W |         170W~130W  130W~90W  90W~50W
      --------------------------------------|--------------------------------------
      UQ         3.3        2.7      3.2    |UQ         4.7        4.5      3.7
      
      VQ        -4.2       -3.4     -1.3    |VQ        -3.3       -5.7     -3.3 
      
      EP        -1.0       -0.8     -0.8    |EP        -1.0       -1.1     -0.9
      LHTFL      1.3        1.4      1.6    |LHTFL      1.3        1.7      1.4
      PRATE      2.4        2.1      2.3    |PRATE      2.5        2.7      2.3
      --------------------------------------|--------------------------------------
      
      --------------------------------------|--------------------------------------
      -60S~-65S                             |-60S~-65S
               170W~130W  130W~90W  90W~50W |         170W~130W  130W~90W  90W~50W
      --------------------------------------|--------------------------------------
      UQ         3.7        2.9      2.7    |UQ         4.5        4.2      3.7
      
      VQ        -4.9       -3.4     -1.0    |VQ        -3.3       -5.5     -4.0
      
      EP        -1.3       -1.0     -0.7    |EP        -1.4       -1.2     -1.4
      LHTFL      1.1        1.2      1.1    |LHTFL      1.2        1.5      0.8
      PRATE      2.4        2.0      1.8    |PRATE      2.4        2.4      2.3
      --------------------------------------|--------------------------------------
      
      追加です.
      
      Low phase          |High phase
      --------------------------------------
      -55S~-60S          |-55S~-60S
              310W~350W  |        310W~350W
      UQ       2.8       |UQ       2.8
      --------------------------------------
      -60S~-65S          |-60S~-65S
              310W~350W  |        310W~350W
      UQ       2.0       |UQ       2.4
      --------------------------------------
      
      Low phase                             |High phase
      --------------------------------------|--------------------------------------
      -65S~-70S                             |-65S~-70S
               170W~130W  130W~90W  90W~50W |         170W~130W  130W~90W  90W~50W
      --------------------------------------|--------------------------------------
      VQ        -5.2       -3.4     -1.0    |VQ        -3.1       -4.9     -4.1
      
      --------------------------------------|--------------------------------------
      
      

      Argentine Island (-60S~-65S, 90W~50W) について, 水蒸気輸送の違いを計算してみました. Low High ------------------------ North 58% 74% West 8% 8% Evapo. 33% 18%

      High は Low に比べて,  UQ,VQが大きい.  130W~90Wの蒸発が大きく,降水も大きい.   90W~50Wの蒸発が小さく,降水が大きい.

      PRATE/(UQ+VQ+LHTFL) Low |High 0.27, 0.28, 0.38 |0.27, 0.23, 0.27 0.25, 0.27, 0.38 |0.27, 0.21, 0.27

      この領域で見ると,降水捕捉率もだいぶ違いますね. (前回のは領域の取り方が悪かったみたいです.)

    20. Temperature Effect
      Average(May-Aug) Low High
      Precipitation 31.734.4
      Temperature -9.0-5.5
      Oxygen 18 -13.4-9.0
      Deuterium -101.2-73.8
      d-excess 5〜10(Ave. 6.0)-5〜5(Ave. -1.8)

      1964-95年5-8月のデータから温度効果を求めると,
       Oxyg = 0.39 * Temp - 8.9 (R^2=0.24)
       Deut = 2.75 * Temp - 70.7 (R^2=0.23)
      となる.そこで,
       0.39 * abs(-9.0-(-5.5)) = 1.76
       2.75 * abs(-9.0-(-5.5)) = 12.38
      Oxyg, Deutの差は,
       abs(- 13.4-(- 9.0)) = 4.4
       abs(-101.2-(-73.8)) = 27.4
      よって,
        1.76/ 4.4 = 0.40
       12.38/27.4 = 0.45
      つまり,Oxygの40%,Deutの45%は温度によって説明できる.

    21. 他の地点との比較(5-8月の全部です)

      Locations

      d-excess (MJJA)

      Arg.Is.(High)  -> Algentine Island (High-phase)
      Arg.Is.(Low)   -> Algentine Island (Low-phase)
      Halley Bay     -> 75.50S,  26.65W
      Pascual Is.    -> 27.17S, 109.43W
      Falkland Is.   -> 51.70S,  57.87W
      
      d-excessの低い水蒸気が北から来るのかなと思って, 他の地点とも比較してみました.
      酸素と温度は同様な分布をしている -> 温度効果.
      酸素や温度は違うが,d-excessは5-10が多い -> 起源が同じ.
      近くのForklandではd-excessは低くないので, -10以下は南極ローカルな値らしい.
      Hallay Bayでd-excessが高いのは何でしょう?

      下の図は,5−8月ではなく,1−12月まで全部のデータです. 傾向は上と同じです.
      降水量との関係は無さそうです.

      d-excess (annual)

    22. Composite for low d-excess
      d-excess が -10より小さいのは,High Phase の夏季(12,1月)が多い.
      そこで,12月,1月のコンポジットとその偏差を計算しました.
      (上の図は偏差,下の図はコンポジットです.)

      High phase と似たようなパターンが出るのを期待していたのですが, だいぶ違いますね.
      共通点は,太平洋の南米沿いの気温に負の偏差が現れている, というくらいでしょうか.
      どういう時にd-excessが低くなるんでしょう?.
      Jannuary
      December

      今度は,5-8月でd-excessが低い月を選びました.
      1996/5, 1982/8, 1983/7, 1985/5,7,8, 1986/8, 1987/8, 1994/5, 1995/5
      Composite of low d-excess


    論文を書いてます

    本文


    Fig. 1 Time series of SSTA in Nino 3 region and δ18O in precipitation for the Argentine Islands, relative to 1964-95. A simple 13-months running mean filter is applied. b, Spectral distributions of them. Green and red lines depict SSTA and δ18O in precipitation.
    Fig. 2 Composite mean of : a, precipitation; b, surface air temperature; c, monthlyδ18O in precipitation compared among the low, mean and high δ18O years. d, Relationships between δ18O and δD in high and low phases. Red, green and blue lines depict low, mean and high phases, respectively.
    Fig. 3 Differences in temperature and winds at 850 hPa between high (a) or low (b) phases and long-term mean. Red/blue shading areas are different more/less than 0.5℃.
    Fig. 4a Difference for latent heat flux between high and low phases. Black dot points observation station (Algentine Island), and square shows the box which calculated by atmospheric water balance analysis.
    Fig. 4b Difference for sea-ice extent between high and low phases. Black lines (0, 90) show long term mean values. Black dot and square are same as Figure 4a.


    1. Location of the IAEA stations in Antarctica.

      Time series from 1965 to 95

    2. Argentine Island (raw data)
    3. Argentine Island (Anomaly/STD)
    4. Argentine Island (13 month running mean)

    5. Halley Bay (raw data)
    6. Halley Bay (Anomaly/STD)
    7. Halley Bay (13 month running mean)

    8. Time series of oxygen isotope and temperature from 1964 to 95.
      (Green lines show the SSTA in Nino 3 region.

      Isotope high and low yeares at Argentine Island and ENSO.
      El Nino -65--69 -- 72---76 --82-- 86---91 92
      Isotope Low 64---69 -- 7273--76 7980--- 8687--- -
      La Nina 64---- 7071 -73-75- ----- --88-- -
      Isotope High -656668- -71 --74-- ---8385 --8889- -
      ENSO years are refered from Smith, T. M. & C. F. Ropelewski (1997).

    9. Comparing between high and low years (Composite mean).
      Blue lines show composite of high years, red lines show composite of low years and green lines show mean of 1964-95.
    10. Comparing between high and low years (MJJA).
      Blue dots show high years and red dots show low years.
      D=8*O+10
      High years; Y=6.4X-15.7 R^2=0.85
      Low years ; Y=7.6X-0.4 R^2=0.94

      Low High
      Tropics (Nino3)SST HighLow
      Antarctic
      (Argentine Island)
      IsotopesLowHigh
      d-excessHighLow
      TemperatureLowHigh
      Reanalysis
      (NCEP,GISST)
      V (850hPa)SouthernNorthern
      T (850hPa)LowHigh
      Sea Ice ExtentHighLow

      Model

    11. T21 AGCM Ensemble Mean (by Matsumura), Ts (JJA)


    Further Study
    1. Trajectry Analysis
      代表的な High, Low の数年づつのデータ.
       NCEP(6hr) UV,W,T,Q dataset を作る.
       Southern Hemisphere のみで,上は 100hPaまで.
    2. ECMWF Reanalysis
      NCEP/NCARだけでなく,ECMWFを使って大気水収支を見る.