HPCI戦略プログラム分野3 超高精度メソスケール気象予測の実証

# Super high resolution experiment of heavy rain in large area using the K computer

## Tsutao Oizumi, Thoru Kuroda, Kazuo Saito



# 2015/03/09 @Nagoya university

## This year's main works

- 1. Preprocess program parallelization
- 2. Visualization utilize the AVS
- 3. Super high-resolution experiment of a heavy rainfall in Hiroshima and Izu Ohshima



## **Parallelize the preprocessing**



Performance test condition

| NX=6400 | # grid number in x-direction           |
|---------|----------------------------------------|
| NY=4400 | # grid number in y-direction           |
| NZ=168  | # grid number in z-direction           |
| DX=250m | # horizontal resolution in x-direction |
| DY=250m | # horizontal resolution in y-direction |

To make 9 hour initial and boundary data.



## Back ground

- In Japan, localized torrential rainfalls sometimes cause severe disasters which impact on the society.
- To prevent and mitigate localized weatherrelated disaster, weather prediction for a wide region in high resolution is very important.



## **Objectives**

- This study aims to clarify the impact of model resolution on the accuracy of the numerical weather prediction (NWP) model.
- Many previous researches carried out numerical experiments in higher resolution than this study, such as tornado, heavy rain event.
- In comparison with those previous researches, one of the features of this experiment was to compute a wide region in super high-resolution.
- This study computed an entire region of Japan in horizontal resolutions in 2 km, 500 m and 250 m.

## Hiroshima heavy rain in 2014

- The research targeted the heavy rain event in Hiroshima city in August 19 to 20, 2014.
- The 24 hours precipitation of an observation point Miiri is the highest value in history.
- The "building phenomenon" was observed in this event.



#### 10 minutes observed precipitation at Miiri



Refer from the NIED: The 12 hours precipitation map using the MLIT's X-band rader "XRAIN" and the MRI C-band rater. (Period August 19, 18:00 – August 20 06:00)



Refer from the NIED: MLIT's Xband rader "XRAIN"



6

## **Experimental conditions**

- Tuned JMA-NHM (Japan Meteorological Agency Non Hydrostatic Model) for K
- Parameter and number of the Z layer are given for each horizontal resolution.
- Simulation periods were August 19, 2014, 21:00 to August 20 6:00.
- Initial and boundary condition were JMA Meso-scale analysis.



| Horizontal | Time |      | XYZ Grids | Turbulence |                         |
|------------|------|------|-----------|------------|-------------------------|
| resolution | Step | NX   | NY        | NZ         | closure model           |
| 2 km       | 10   | 800  | 550       | 60         | Mellor-Yamada<br>level3 |
| 500 m      | 2    | 3197 | 2197      | 85         | Deardorff               |
| 250 m      | 1    | 6393 | 4393      | 168        | Deardonn                |

#### Time for the computation (9hour simulation)

|       | Number of nodes | Parallel preprocessing | Tuned NHM | Peak<br>performance(%) |
|-------|-----------------|------------------------|-----------|------------------------|
| 2 km  | 72              | 0:03:23                | 0:32:11   | 4.70%                  |
| 500 m | 1152            | 0:25:48                | 4:12:55   | 2.74%                  |
| 250 m | 4608            | 0:59:43                | 18:57:34  | 2.49%                  |

## Results: JMA prediction and super high resolution simulation

Initial time August 19, 21:00 (JST)



## **9hours simulation**





# Impact on turbulence closure model : Izu Ohshima and Hiroshima



In this study, also turbulence closure model impacted on squail line position.

## 2 km simulation vs 500 m simulation





2 km resolution The resolution and model setting were as same as the operational setting of the Japan meteorological agency. (TIME is UTC, JST +9 hours)

500m resolution The super high resolution prediction using K computer. (TIME is JST)

.....

## Accumulated precipitation on the ground



## **Conclusion and future works**

Conclusion

- This study conducted super high resolution simulation in multi resolutions.
- The results indicate higher resolution results are better than 2 km resolution simulation.

### **Future Works**

- What impact on simulation accuracy in higher resolution?
- To clarify influence of relationship between computational domain and simulation results.
- To understand the turbulence closure model impact on to Izu Oshima and Hiroshima cases.

# Thank you for your attention

 This research used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science through the HPCI System Research project (Project ID:hp140220)

