The 5th Research Meeting of Ultrahigh Precision Meso-scale Weather Prediction Mar. 9 (Mon), 2015 Nagoya

Multiple Eyewalls and Wind Features in the 2012 Typhoon BOLAVEN

Seiji ORIGUCHI, Kazuo SAITO, Hiromu SEKO, Wataru MASHIKO, Masaru KUNII (MRI/JMA)

Background of research

- BOLAVEN passed the Okinawa Main Island, while moving northwestward. Multiple eyewall structure was clearly formed more than 24 hrs without eyewall replacement.
- In previous researches, many researches mainly performed in the event with eyewall replacement, and structure and feature of multiple eyewall without replacement didn't mostly understand.

- MSM didn't reproduce the multiple eyewall structure, and the precipitation and surface wind speed predicted by the MSM were more intense than ones actually observed in the central region.
- Okinawa Meteorological Observatory held an unprecedented press conference before the approach of BOLAVEN to take greatest precautions for the local governments and inhabitants. However, severe damages didn't actually occur.

Surface observation data (Nago station) Approaching period, ~ 1228UTC 26 Aug 2012

e.g. Kitabatake et al. 2013

Design of cloud-resolving ensemble experiment

This ensemble experiment was performed with the

supercomputers Fujitsu 'Kei' and Hitachi 'SR16000'

<Model settings>

	5km-forecast	1km-forecast	<ensemble forecast=""></ensemble>			
Model	JMA-NHM		25 th August, 2012 1200UTC 1800UTC 0000UTC (FT00) (FT06) (FT12)			
Resolution • Grid size	5km • 721x577x50	1km • 800x800x60				
Time step	24 sec	4 sec	Resolution 5km, Member 11 1800UTC 0000UTC Self-nest (FT00) (FT06)			
Initial condition (Control run)	Meso analysis (NHM-4DVAR) Resolution 5km (Inner-loop 15km, Outer-loop 5km, Assimilation Window 3hr)	FT=06 of 5km forecast	Resolution 1km, Member 11			
Boundary condition (Control run)	GSM forecast (interval 1hr)	5km forecast (interval 1hr)	Analysis period			
Initial condition (Perturbative member)	Meso analysis + perturbation of JMA weekly ensemble forecast	FT=06 of 5km forecast	$\frac{1800 \text{UTC } 25^{\text{th}} - 0003 \text{UTC } 26^{\text{th}} (9 \text{hr})}{\text{Model domain}}$			
Boundary condition (Perturbative member)	GSM forecast + perturbation of JMA weekly ensemble forecast	5km forecast (interval 1hr)	1km-domain			
Member	11 (Control run + Perturbative 10 members)					
Basic equation	Full compressible • Nonhy	vdrostatics • Solution of HE-VI				
Cloud microphysics • Convective scheme	2-moment 3-ice bulk method + Kain-Fritsch scheme	2-moment 3-ice bulk method				
Layer • Turbulent scheme	Mellor Yamada Nakanishi Niino Level3 (2009)	Deardorff (1980)	25N 1000 - 3000 - 3000 - 3000 - 200 1000 - 2000 - 3000 - 3000 - 200 1000 - 2000 - 3000 - 200 1000 - 3000 - 3000 - 3000 - 200 5km-domain			
			0 500 1000 1500 2000 126E 127E 128E 130E 131E 132E			

High-precision estimation of typhoon's central position

Because the picture of multiple eyewall significantly depends on the accuracy of central position, it was estimated based on Braun's method (Braun 2002).

Braun's method

CP_m; Grid point of minimum surface pressure **CP_b**; Grid point estimated by Braun's method

[σ_r : Standard deviation of Psea on the ring region of radius r, width 1 km]

①Grid point of minimum surface pressure is selected as first guess (CP_m), and *Sp* is calculated at many points in the vicinity of CP_m.
②Geometric central position (CP_b) is decided at the point of minimum value of *Sp*.

③The position of grid point of CP_b is applied to all altitude.

Because BOLAVEN wasn't affected by jets and troughs, typhoon's center wasn't a tilt in the target period.

The maximum and average distances of relative positions between minimum surface pressure and geometric center were 7.8 km and 3.8 km, respectively. (Difference of pressure was less than 0.5 hPa)

➡

Analysis was affected by the difference of about 8 km.

→ Typhoon's central position must be decided with Braun's method.

Objective evaluation of multiple eyewall

 Reproducibility was evaluated using the average of standard deviation of total water substance (Cloud water, Rain, Cloud ice, Snow, Graupel) within the ring, which has the shape of height from 0.5 km until 4 km and width 2km at the radius of local maximum tangential velocity.

Multi-eye index (MEI)

$MEI = \frac{1}{N} \left[\frac{1}{N} \sum_{i=1}^{N} (Tw_i - M)^2 \right] \left(M = \frac{1}{N} \sum_{i=1}^{N} Tw_i \right)$		Reproduction criteria:		$\mathrm{MEI} \leq 0.80$
$M \sqrt{N^{-t-1}} \qquad (N^{-t-1} t)$		Member	Radius of local maximum tangential velocity (km)	MEI
$Tw_i = (Qc + Qr + Qi + Qs + Qg)_i$	Aultiple-Eye	P05	133.0	0.58
N: Grid number within the ring		P01	120.0	0.64
M: Average of total water substance within the ring		CNTL	140.0	0.69
Height Z ↑		P03	148.0	0.76
		M05	134.0	0.79
2.0km	Spiral like	M03	139.0	0.83
		M02	114.0	0.89
		P04	135.0	0.91
Radius of eyewall decided by local 3.5km (Height;0.5km~4.0km)		M04	124.0	0.96
maximum of tangential velocity		P02	140.0	1.08
l skm		M01	132.0	1.17
Geometric center estimated by Braun's method Radius		Small MEI indicates high-reproducibility of multiple eyewall structure.		

Reproduction result of each member TW Height 3.17km FT=04

60.0m/s

60.0m/s

Difference of multiple eyewall structure (P05) and spiral structure (M01)

Wind velocity [ms⁻

-8

-12

-14

-16

Maintenance of multiple eyewall structure (P05) and spiral structure (M01)

Formation process of multiple eyewall structure (P05) and spiral structure (M01) Vertical flow (W) at Z*=3.31km

The low-level temperatures in P05 were relatively lower than those of M01, while •

 Formation of the outer eyewall on northwestern and northeastern sides of the inner eyewall

The relatively cold and humid region that extended from the south of Okinawa N ● <u>Maintenance of the generated spiral bands</u> was located just at the eastern side of the spiral rainbands of M01.

Each correlation between MEI and highest top 5 % wind velocity

(tangential and inward wind velocities) within radius 60 km at FT=04

Height 0.01km

Height 0.8km

- Below the altitude of 1 km, correlations between MEI and wind velocity (tangential and inward wind velocities) were larger than positive medium correlation.
- The positive strongest correlation indicated with wind veocity and tangential wind velocity at the altitude of 0.8 km.

Test of correlation coefficient: Significance ($\alpha = 5\%$) for the wind velocity (tangential and inward wind velocities) below the altitude of 1 km.

The strong winds near the surface in the central region trend to be suppressed statistically, as the degrees of multiple eyewall structure are larger.

Correlation coefficient R $|R| \ge 0.7$ (strong correlation) $0.5 \le |R| < 0.7$ (medium correlation) $0.3 \le |R| < 0.5$ (weak correlation) |R| < 0.3 (no correlation)

Correlation between MEI and LFC, FT=00-04

04.

R=-0.206

1.3

1.1

0.9

MEI

The effects of the environment (LFC) on the eyewall structure were small, and it suggests that factors that affected the degree of multiple eyewall structure were the formation mechanism in the central region of typhoon itself.

0.7

500

0.5

R=-0.194

1.3

1.1

500

0.5

0.7

0.9

MEI

Correlation coefficient R $|R| \ge 0.7$ (strong correlation) $0.5 \le |R| < 0.7$ (medium correlation) $0.3 \le |R| < 0.5$ (weak correlation) |R| < 0.3 (no correlation)

Correlation between MEI and CAPE, FT=00-04

The effects of the environment (CAPE) on the eyewall structure were small, and it suggests that factors that affected the degree of multiple eyewall structure were the formation mechanism in the central region of typhoon itself.

0.7

0.9

MEI

1.1

1.3

600

0.5

1.3

700

0.5

0.7

0.9

MEI

1.1

 $\begin{array}{l} \mbox{Correlation coefficient R} \\ |R| \geq 0.7 \quad (\mbox{strong correlation}) \\ 0.5 \leq |R| < 0.7 \quad (\mbox{medium correlation}) \\ 0.3 \leq |R| < 0.5 \quad (\mbox{weak correlation}) \\ |R| < 0.3 \quad (\mbox{no correlation}) \end{array}$

Gradient velocities of actual typhoons and tangential wind velocity of simulated P05

Surface gradient wind velocity (Tomitaka 1985)

The surface gradient wind velocities of actually observed typhoons NANCY in 1961 and YANCY in 1993 were obtained using Fujita's pressure formula.

$$V_g = \frac{1}{2} \left\{ -fr + \sqrt{f^2 r^2 + \frac{4r}{\rho} \cdot \frac{\partial P}{\partial r}} \right\} \quad \frac{1}{\rho} = \frac{R^*}{P} \left\{ \frac{T}{1 - 0.378(e/P)} \right\}$$

T: Temperature *e*: Pressure of water vapor

 R^* : gas constant of air

The tangential wind velocity of P05 in the typhoon's \geq central region was weaker than the surface gradient wind velocities of the typhoons NANCY and YANCY.

Fujita's pressure formula (FPF; Fujita 1952)

P(r) shows the pressure distribution of the ordinary typhoon

$$P(r) = P_{\infty} - \frac{P_{\infty} - P_0}{\sqrt{1 + (r/r_0)^2}}$$

 P_0 : Typhoon's central pressure r_0 : Spread of horizontal direction

 P_{∞} : Radius of influence of typhoon

Compared with the typhoon of the simulated P05, FPF that was estimated using the data of the simulated P05 had ...

- the narrower region around the center of typhoon \geq
- more sharp slope at the radius of between 20km and 40km \geq

<u>Summary</u>

Compared with the typhoon of single eyewall and spiral rainbands, <u>the typhoon of multiple</u> eyewall have the following features;

- > The gentle pressure gradient near the surface in the central region
- The suppressed inward inflow below the altitude of 1 km by formation of outer eyewall
- The weak convections and unclear divergence of upper layer in the inner eyewall
- The suppressed surface wind velocity and precipitation in the central region
- The appropriately maintenance of convection in the outer eyewall by the supplied lower moist inflow from the outside of typhoon

The effects of the environment on the eyewall structure were small, and the factors that affected the degree of multiple eyewall structure were the formation mechanism in the central region of typhoon itself.