2016.3.7: The 6th Research Meeting of Ultrahigh Precision Meso-scale Weather Prediction

Dependency of horizontal resolution on structure changes of atmospheric stratification in the 2015 Hiroshima heavy rainfall

Teruyuki KATO (Meteorological Research Institute, JMA,Japan)

気象研究所

Weather condition and Rainfall distribution

Heavy rainfall occurred ~300km south of stationary front.

Similar to heavy rainfall events observed in the rainy season of Japan.

Numerical model and experimental design

Model : JMANHM (Saito et al. 2006)

Dynamics: Fully compressible equations with a map factor

Cloud physics: Bulk-type with six water species (qv, qc, qr, qi, qs, qg)

Convection: none

Turbulence: MYNN scheme (Nakanishi and Niino 2006)

Surface flux: Beljaars and Holtslag (1991)

Horizontal grid: 2km, 1km, 500m, 250 m Initial/boundary data: Hourly JMA-Local analysis adopting a 3DVAR assimilation system, but for 250m Numerical diffusion: 20min(linear), 10min(2D) Water vapor diffusion for grids with w > 10 m/s

Design of 250mNHM run 18JST19 21 00JST20 03 06 JMA's Local Analysis O O O O O O O O O O O 2kmNHM 250mNHM

Results of 18JST19initial(3-houly accumulated rainfall at 04JST20)

In this case, resolution of two kilometer can reproduce a rainband.

250m resolution is necessary to reproduce the structure of multi-cell clusters.

Appearance frequency of atmospheric structure and θ_e

Time change of atmospheric structure and θ_e

Shift of high θ_e areas is not so large.

0

High θ_e areas largely shift downstream in mean.

Max/mean distributions of vertical motions at 10km height (23JST19~04JST20)

High correlations are found in distributions between θ_e and updrafts.

0)

Dependency of horizontal resolution on structure changes of atmospheric stratification ① Even 2kmNHM can successfully reproduce a band-shaped rainfall area, but not structures of the precipitation system. 2 For the reproduction, 250mNHM is necessary. **3** Weaker updrafts shift rainfall areas downstream in 2kmNHM. (4) Higher appearance frequency for $\theta_{a} > 350$ K is found at the middle level in 2kmNHM, but grids with $\theta_{\rho} > 355$ K are found almost equal to that in 250mNHM. **(5)** Acceleration regions of updrafts with conserving θ_{e} are very narrow, which is found even in 2kmNHM, but their intensity.

Stratification is little changed by convective activities.