Numerical simulations of shallow clouds by SCALE-LES3

Development of SCALE-LES3 (SCALE-LES ver. 3) and benchmark tests

Yousuke Sato, Seiya Nishizawa, Hisashi Yashiro, Yoshiaki Miyamoto, Hirofumi Tomita, and Team-SCALE

1:What is SCALE-LES?

SCALE

(Scalable Computing for Advanced Library and Environment)

Library for weather/climate research for peta-scale or post peta-scale computer

2. Model: numerical method

SCALE-LES

- Fluid system : 3D fully compressible •
- Numerical solving method •

Grid system	Arakawa-C
Temporal descretization	3 rd order Runge-Kutta (HE-VE)
Advection for momentum	4 th order
Advection for $\rho\theta$	4 th order
Pressure gradient force	2 nd order central
Numerical diffusion	4 th order

- Included component •
 - SGS model: Smagorinsky-Lilly
 - Cloud physics: 2-moment bulk, 1-moment Bin
 - Radiation: MXTRN-X
 - Surface flux : Monin-Obukhov's similarity

Benchmark tests are mostly finished and first version will published soon

Ζ

3. Benchmark test

- Cold bubble (S. Nishizawa)
 - Test of dynamical frame : only dynamics module
- Dry turbulence (S. Nishizawa and Y. Miyamoto)
 - Test of dynamical core and sub-grid model : dynamics + SGS
- DYCOMS-II RF01 (Stratocumulus) (Y.Sato)
 - Test of SGS and cloud physics without rain
- RICO (Shallow cumulus) (Y.Sato)
 - Test of cloud physics with rain

Cold-bubble Experiment

(Nishizawa et al. in preparation)

Experimental setup is based on Straka et al. (1993)

- Dynamical core only
- Domain size: 51.2km x 6.4km (2D)
- Resolution: 25m
- Cold bubble: -15 K (max)
 - location : x=25.6km, z=3km
 - size :4km x 2km
- No diffusion except for numerical diffusion 10⁻³

DYCOMS-II RF01 case (Stratocumulus without rain)

Experimental setup is based on Stevens et al. (2005)

- Domain size: 3.36km x 3.36km x 1.5 km(3D)
- Resolution: dx=dy=35, dz=5m
- Calculation time : 4 hour (dt=0.006s)
- Cloud physics : 2-moment bulk (Seiki and Nakajima, 2013) [without rain and sedimentation]
- Radiation : Parameterization of Stevens et al. (2005)
- Surface flux : Constant value
- Numerical diffusion : 10⁻⁶

Cloud water mixing ratio at t=3.5h

Time evolution

Hourly averaged profile (last 1 hour)

Summary

- SCALE-LES ver. 3.1 is now developing at RIKEN AICS
- Several benchmark tests indicate that SCALE-LES 3.1 shows good performance

<u>Announce</u>

- The SCALE-LES ver. 3.1 will published from Web site of RIKEN soon.
- All of you can use the SCALE-LES by free (BSD 2 license)

Using K computer of Exa-SCALE computer, experiments with extremely fine grid spacing will be conducted. ⇒ Sensitivity experiment of grid spacing is required before product run!!

4: Sensitivity of grid spacing and aspect ratio of grid

- Cold bubble
- Dry Turbulence
- RF01

From now the detailed description will be skipped because of time limitation....

If you have any question, please contact me after this session!! The detailed discussion will be shown at JMS Spring meeting by S. Nishizawa (D403), and Y.Sato (B460)

Dry turbulence

Experiments	$\Delta \mathbf{x} (\mathbf{m})$	$\Delta z (m)$	# of horizontal grid	# of vertical grid	grid aspect ratio
AR0001a	30	30	320	80	1
AR0002a	60	30	160	80	2
AR0005a	150	30	64	80	5
AR0010a	300	30	$\overline{32}$	80	10

AR=5,10: w'w' and w'w' w' are different from those in AR=1,2 => the turbulent fields are different from that which should be simulated in the current setting

Stratocumulus (RF01)

Decoupling should not occur from observation ⇒ Aspect ratio = 3 (dx=15m, dz=5m) is required!

Summary

- SCALE-LES ver. 3.1 is now developing at RIKEN AICS
- Several benchmark tests indicate that SCALE-LES 3.1 shows good performance
- Aspect ratio should be set to 1~3
- The SCALE-LES ver. 3.1 will published from Web site of RIKEN near future.
- All of you can use the SCALE-LES by free (BSD 2 license)
- Effect of grid spacing is now investigating and detailed discussion will be published at JMS Spring meeting!