The media stores following files. 1. README.e.txt (this file) 2. JCOPE data (5 types; '********' denotes YearMonthDay) 2.1 EL_********: Sea Surface Height 2.2 T_******** : Potential Temperature 2.3 S_******** : Salinity 2.4 U_******** : Zonal velocity 2.5 V_******** : Meridional velocity 2.6 The time system for YearMonthDay is UTC. 3. basic.dat: topography and coordinate Data format is fortran binary with single precision and big-endian. 1. size of array paramater( im=242,jm=158,km=47 ) im: number of zonal direction, jm: number of meridional direction, km: number of vertical levels 2. topography and coordinate reading format: open(10,file='basic.dat',form='unformatted') read(10) fildsc,z,zz,dz,ichflg bottom depth of a cell(i,j): z(i,j,km) depth of a cell edge: z(i,j,k) depth of a cell center: zz(i,j,k); depth of velocity, temperature, salinity height of a cell (i,j,k): dz(i,j,k) = z(i,j,k)-z(i,j,k+1) file description (a4): fildsc read flag(=123456,i4): ichflg 3. data The JCOPE data is consists of following 5 file types: T_: Temperature - 10. (deg.C) S_: Salinity - 35. (psu) U_: zonal velocity (m/s) V_: meridional velocity (m/s) EL_: sea surface height (m) Variables were averaged in 1 day. For example, T_20021105 were averaged from the temperature sampled with a time step of 8 minutes during a period from 0:00UTC, Nov 4, 2002 to 0:00UTC, Nov 5, 2002. A reading format of 'EL_********' is as follows: open(10,file=datadir(1:lnblnk(datadir)) & //'EL_'//cyear//cmonth//cday ; e.g., EL_20021105 & ,form='unformatted') read(10) fildscEL,iyf,imf,idf,el,mall file description (a4): fildscEL year (i4): iyf month (i4): imf day (i4): idf sea surface height (r4): el(im,jm) read flag (=360) (i4): mall A reading format of 'T(S,U,V)_********' is as follows: open(10,file=datadir(1:lnblnk(datadir)) & //'T_'//cyear//cmonth//cday ; e.g., T_20021105 & ,form='unformatted') read(10) fildscT,iyf,imf,idf,(((T(i,j,k),i=1,im),j=1,jm),k=1,km-1),mall file description (a4): fildscT year (i4): iyf month (i4): imf day (i4): idf sea surface height (r4): T(im,jm,km) ; variable at level=km is not used. read flag (=360) (i4): mall +++++ A sample program 'test_sample.f' can be compiled using 'ifort' command. $ifort -convert big_endian test_sample.f A loadmodule 'a.out' will be created. Following lines in program 'test_sample.f' may be modified if you use this program. 1. datadir='./' 2. isyy = 1992 ismm = 11 isdd = 02 ieyy = 1992 iemm = 11 iedd = 02 3. depthfile='./basic.dat' If you use 'GrADS' for visualizing variables, you had better check a following matter. in subroutine gs2dt0var c SUN/PC c open(50,file=dataname,form='unformatted' c & ,access='direct',recl=i0*j0*4*numval) c IRIX open(50,file=dataname,form='unformatted' & ,access='direct',recl=i0*j0*numval) also, in subroutine gs3dt0var c SUN/PC c open(50,file=dataname,form='unformatted' c & ,access='direct',recl=i0*j0*4*numval) c IRIX open(50,file=dataname,form='unformatted' & ,access='direct',recl=i0*j0*numval) The sample program simply puts all variables on the same position in GrADS output; users can superimpose velocities on temperature/ salinity using u.ctl, v.ctl and t.ctl. However, the model (POM) uses staggered grid. The sample program specifies following variables: xlon(i): longitude of i-th cell's center (position of EL, T, S) ylat(j): latitude of j-th cell's center (position of EL, T, S) xlonu(i): longitude of i-th cell's western edge (position of U) ylatu(j): latitude of j-th cell's western edge (position of U) xlonv(i): longitude of i-th cell's southern edge (position of V) ylatv(j): latitude of j-th cell's southern edge (position of V) (request) If you refer the JCOPE2M data in documents, you would be requested that you also refer our papers: Miyazawa, Y., A. Kuwano-Yoshida, T. Doi, H. Nishikawa, T. Narazaki, T. Fukuoka, and K. Sato, 2019: Temperature profiling measurements by sea turtles improve ocean state estimation in the Kuroshio-Oyashio Confluence region, Ocean Dynamics, 69, 267-282. Miyazawa, Y., S. M. Varlamov, T. Miyama, X. Guo, T. Hihara, K. Kiyomatsu, M. Kachi, Y. Kurihara, and H. Murakami, 2017: Assimilation of high-resolution sea surface temperature data into an operational nowcast/forecast system around Japan using a multi-scale three dimensional variational scheme, Ocean Dynamics, 67, 713-728. E-mail: jcope@jamstec.go.jp https://www.jamstec.go.jp/jcope/