A new genus and species of the family Pennellidae (Copepoda, Siphonostomatoida) infecting the Pacific viperfish Chauliodus macouni

Susumu Ohtsuka1,*, Dhugal J. Lindsay2, and Kunihiko Izawa3

1 Takehara Station, Setouchi Field Science Center, Graduate School of Biosphere Science, Hiroshima University, 5-8-1 Minato-machi, Takehara, Hiroshima 725-0024, Japan
2 Research and Development Center for Submarine Resources, Environmental Impact Assessment Research Group, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
3 Izawa Marine Biological Laboratory, 795-16 Kannonji, Tsu, Mie 514-0062, Japan

Received 9 November 2017, Accepted 17 January 2018, Published online 9 February 2018

Abstract -- A new genus and species of pennellid copepod, Protosarcotretes nishikawai n. g., n. sp., is described on the basis of an ovigerous female infecting a Pacific viperfish Chauliodus macouni collected from the deep-waters of Suruga Bay, Japan. The new genus exhibits the most plesiomorphic states in the first to fourth legs of pennellids, and is differentiated from two closely related pennellid genera Sarcotretes and Lernaeenicus by the morphology of the oral appendages. Two species of the genus Lernaeenicus are transferred to the new genus as Sarcotretes scopeli Jungersen, 1911 and Cardiodectes bellottii (Richiardi, 1882) show low differentiated host-specificity, while P. nishikawai seems to be limited to the Stomiidae, which are rare hosts of pennellids, in contrast to the Myctophidae family. In the Pennellidae family, two patterns of the life cycle are found: with or without naupliar stages.

Keywords: Copepoda; deep-sea; Pennellidae; taxonomy

Résumé -- Un nouveau genre et une nouvelle espèce de la famille Pennellidae (Copepoda, Siphonostomatoida) infectant le poisson-vipère du Pacifique Chauliodus macouni. Un nouveau genre et espèce de copépode Pennellidae, Protosarcotretes nishikawai n. g., n. sp., est décrit sur la base d’une femelle ovigère infectant le poisson-vipère du Pacifique Chauliodus macouni prélevé dans les eaux profondes de la baie de Suruga, au Japon. Le nouveau genre présente les états les plus plesiomorphes des appendices 1 à 4 des Pennellidae et se différencie de deux genres apparentés, Sarcotretes et Lernaeenicus, par la morphologie des appendices oraux. Deux espèces du genre Lernaeenicus sont transférées dans le nouveau genre comme Protosarcotretes multilobatus (Lewis, 1959) n. comb. et Protosarcotretes gnarus (Leigh-Sharp, 1934) n. comb. La spécificité de l’hôte et le cycle de vie des Pennellidae profonds sont discutés. Sarcotretes scopeli Jungersen, 1911 et Cardiodectes bellottii (Richiardi, 1882) montrent une spécificité d’hôte peu différenciée, tandis que P. nishikawai semble être limité aux Stomiidae, rarement utilisés comme hôtes par les pennellidés, contrairement à la famille Myctophidae. Dans la famille Pennellidae, on retrouve deux types de cycle de vie, avec ou sans étapes naupliars.

Introduction

Pennellid copepods are highly modified, meso- or ectoparasitic copepods infecting marine fish and mammals as definitive hosts [8]. The life cycle of the family is complex, with some genera needing two hosts, while others require only a single host [7,8,20,24]. The intermediate hosts of Cardiodectes Wilson, 1917 and Pennella Oken, 1815, with two hosts each, are free-swimming molluscs [8,16,31,36]. Some species of the genera Pennella, Peniculus
Nordmann, 1832 and *Lernaeenicus* Le Sueur, 1824 heavily parasitize wild and cultured commercially important fish and squids throughout the world’s oceans, presumably causing economic losses [3, 20, 28, 31, 32, 33, 34, 35, 38, 48]. The genera *Cardiodectes* and *Sarcotretes* Jungersen, 1911 have been found on mesopelagic and bathypelagic fish [5, 8, 13, 17, 18, 22, 46, 49].

During a survey on the deep-water plankton of Suruga Bay, Japan, an undescribed pennellid copepod was discovered on the Pacific viperfish *Chauleiodus macouni*, 1890, Bean (Fig. 1A, B). This animal generally resembles three pennellid genera, *Sarcotretes*, *Lernaeenicus* and *Peniculus*, placing it within the family Pennellidae as defined by Boxshall [4], although the first two genera appear taxonomically confused. In *Sarcotretes* and *Lernaeenicus*, the neck (see “ne” in Fig. 1) is composed of the first to fourth pedigerous somites, while in *Peniculus*, the fourth pedigerous somite is incorporated into the trunk [8]. According to the keys to pennellid genera provided by Kahata [23] and Boxshall & Halsey [8], a feature distinguishing these two genera is the presence (in *Sarcotretes*) or absence (in *Lernaeenicus*) of a middle constriction of the neck. However, this is not applicable to all species of the former. For example, *Sarcotretes longirostris* Ho, Nagasawa, & Kim, 2007 bears a slender neck without a constriction midway (see Fig. 1A in Ho et al. [17]). On the other hand, *Lernaeenicus* also seems to be a catch-all group when the morphological variability in the cephalosomes, abdomens and legs is considered. Some species of *Lernaeenicus* bear a well-developed abdomen, while in others it is highly reduced like in *Sarcotretes*. In many species, legs 3 and 4 are uniramous, while in *L. multilobatus* Lewis, 1959 they are biramous. Castro Romero [11] provided a different key to pennellid genera, and suggested that the key characteristics differentiating these two genera are the morphology of the cephalic holdfasts, proboscis and labium.

The present paper deals with the taxonomy of the undescribed pennellid copepod parasitizing the Pacific viperfish, and discusses the validity of the genera *Sarcotretes* and *Lernaeenicus*.

Materials and methods

The present specimens (a parasitic copepod attached posterior to the right eye of its host fish) were captured in Suruga Bay (35°02.3’N, 138°40.5’E) between 12:21-13:51 on September 8, 2017 in an oblique tow (0-810 m depth) of an ORI net (355 μm mesh, 1.6 m mouth diameter) during cruise SRM17-9-VPR of the T/V Hokuto (Tokai University). The specimens were photographed live before being preserved in 99.5% ethanol (see Fig. 1). The host fish was identified as *Chauleiodus macouni* Bean, 1890 by reference to Nakabo [29].

The parasitic copepod was removed from the host tissue and then partly dissected in lactophenol with a pair of fine needles under a dissecting microscope (SZX7, Olympus Co., Ltd.). The body and appendages were examined in lactophenol and drawn with the aid of a camera lucida attached to a compound microscope (BX53, Olympus Co., Ltd.). The specimens were deposited in the Kitakyushu Museum of Natural History and Human History (KMNH). Terminology follows Huys & Boxshall [19] and Ho et al. [17].

Results

Genus Protosarcotretes n. g.

Order Siphonostomatoida Burmeister, 1835

Family Pennellidae Burmeister, 1835

pi type species. *Protosarcotretes nishikawai* n. g., n. sp. (by monotypy).

Other species. *Protosarcotretes multilobatus* (Lewis, 1959) (new combination); *Protosarcotretes gnatus* (Leigh-Sharpe, 1934) (new combination).

Etymology. The new generic name is derived from *pro* (Greek prefixed, meaning primitive) and a closely related genus *Sarcotretes*, and refers to the primitive condition, especially in the segmentation and setation of legs 1–4, of the new genus. Gender masculine.

Diagnosis. Body straight, without brush-like structure on abdomen. Cephalothoracic holdfast represented by pair of lateral expansions. Oral cone weakly produced anteroventrally to form proboscis. Neck comprising pedigers 2–4, first urosomite and anterior part of trunk. Trunk cylindrical; abdomen highly reduced; caudal rami present, bilobate with 2 and 4 setae, respectively. Egg string uniseriate. Total length ca. 10 mm.

Antennule indistinctly 4-segmented. Antenna 3-segmented, heavily sclerotized; second segment produced at subterminal corner into stout triangular process; third segment curved inward to form subchela with process of preceding segment, bearing minute basal seta. Mandible simple stylet-like, with no teeth distally. Maxillule unilobate, inner lobe with 2 terminal setae; outer lobe absent. Maxilla 2-segmented; first segment with no accessory process; second segment bearing 4 rows of spinular prominences on calamus. Legs 1–4 biramous; rami 2-segmented; armature elements shown in Table 1.

Remarks. Once both *Sarcotretes* and *Lernaeenicus* are rigidly defined, it is evident that the establishment of a new genus for the present material is warranted. However, since many taxa belonging to these genera were poorly described in the 18th and at the beginning of the 19th centuries, the definitions below are still tentative and await a complete revision (see Raju et al. [38]).

Adult females of *Sarcotretes* are relatively rigidly defined by the following synapomorphies in comparison with other closely related pennellid genera: (1) paired cephalic holdfasts expanded laterally, (2) oral cone moderately or highly developed, produced anteroventrally to form proboscis, (3) abdomen highly reduced, (4) caudal rami absent, (5) leg 3 uniramous, and leg 4 represented by vestige, (6) armature elements of legs 1–3 as presented in Table 1 (based on Uyeno et al. [46]), and (7) rudimentary...
Figure 1. Protosarcotretes nishikawai n. g., n. sp., adult female (holotype). A. whole specimen, in-situ on host, after fixation; B. whole specimen (arrowed), in-situ on host, before fixation; C. whole specimen, dissected out of host. Abbreviations: ce: cephalothorax, es: egg string, ne: neck, tr: trunk. Scales in mm.
outer spines present on first exopodal segments of legs 1 and 2. Based on observations of the laboratory by Castro Romero & Kuroki [12] and Castro Romero [11], those of Sarcotretes bear a pair of pad-like structures. The body length is highly variable, ranging from 13–85 mm [13,17,18,22,46,49]. This genus has so far accommodated 13 species of Lernaeenicus occurring in the Indian Ocean: their hosts are restricted to shallow-water families such as Bleniidae, Carangidae, Engraulidae, Hemiramphidae, Mugilidae, Nemipteridae, Polynemidae, and Scombridae.

The new genus described here shows many plesiomorphies in the oral cone and legs (see Boxshall [4]), but some states in the mandible, maxillule and maxilla can be regarded as apomorphic. Although Lernaeenicus multilobatus Lewis, 1959 parasitic on the angler-fish Gigantactis sp. (Gigantacinidae), was poorly described by Lewis [27], it can be assigned to the new genus by: (1) the holostom composed of a pair of cephalothoracic lateral expansions, (2) the abdomen being highly reduced, and (3) leg 4 being biramous. Lernaeenicus gwau Lewis-Sharpe, 1934 was poorly described on the basis of a single adult female with a damaged cephalothorax, in which the oral cone cannot be seen in Fig. 35 of the original description [26]. However, the morphological and ecological features suggest that it is probably assignable to the new genus we describe: (1) the abdomen is reduced; (2) the body length is about 10 mm, regardless of the damaged cephalothorax; (3) the host fish Polyipnus spinosus Günther belongs to the deep-sea family Sternoptrychidae.

An evolutionary trend in reduction of segmentation of the legs is distinct in adult females of the Protosarcotretes-Sarcotretes-Lernaeenicus lineage (present study). Similar patterns can be found in the legs of parasitic copepod families such as Chondracanthidae, Pandaridae, and Hatschekiidae [23]. Generally, anterior legs are relatively conserved and show full segmentation in their rami, while posterior legs tend to have the number of segments reduced, finally leading to a vestigial condition (Table 1).

<table>
<thead>
<tr>
<th>Genus</th>
<th>Leg</th>
<th>Protopod</th>
<th>Exopod</th>
<th>Endopod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcotretes</td>
<td>1</td>
<td>I-0</td>
<td>I-1, I.5</td>
<td>0-1, 7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1-0</td>
<td>I-1, I.5</td>
<td>0-1, 7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1-0</td>
<td>0-0, I,4</td>
<td>absent</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>Lernaeenicus</td>
<td>1</td>
<td>I-1</td>
<td>I-1, I.5</td>
<td>0-1, 7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1-0</td>
<td>0(I)-1, I.6</td>
<td>0-1, 7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1-0</td>
<td>0-0, I,5</td>
<td>absent</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1-0</td>
<td>0-0, I,4</td>
<td>absent</td>
</tr>
<tr>
<td>Protosarcotretes n. g.</td>
<td>1</td>
<td>I-1</td>
<td>I-1, I.5</td>
<td>0-1, 8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1-0</td>
<td>I-1, I.5</td>
<td>0-1, 4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1-0</td>
<td>I-1, I.5</td>
<td>0-1, 4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1-0</td>
<td>I-1, I.5</td>
<td>0-1, 3</td>
</tr>
</tbody>
</table>

The new genus described here shows many plesiomorphies in the oral cone and legs (see Boxshall [4]), but some states in the mandible, maxillule and maxilla can be regarded as apomorphic. Although Lernaeenicus multilobatus Lewis, 1959 parasitic on the angler-fish Gigantactis sp. (Gigantacinidae), was poorly described by Lewis [27], it can be assigned to the new genus by: (1) the holostom composed of a pair of cephalothoracic lateral expansions, (2) the abdomen being highly reduced, and (3) leg 4 being biramous. Lernaeenicus gwau Lewis-Sharpe, 1934 was poorly described on the basis of a single adult female with a damaged cephalothorax, in which the oral cone cannot be seen in Fig. 35 of the original description [26]. However, the morphological and ecological features suggest that it is probably assignable to the new genus we describe: (1) the abdomen is reduced; (2) the body length is about 10 mm, regardless of the damaged cephalothorax; (3) the host fish Polyipnus spinosus Günther belongs to the deep-sea family Sternoptrychidae.
Description. Adult ovigerous female. Body (Figs 1, 2A) consisting of expanded cephalosome, relatively short neck and cylindrical trunk. Trunk tinged dark brown before fixation (Fig. 1B), and bearing white spots sparsely after fixation (Fig. 1A, C). Total length 10.6 mm from anterior tip of cephalosome to posterior end of caudal ramus, excluding setae. Parts anterior to genital complex (trunk) embedded in host tissue (arrow in Fig. 2A). Integument of dorsal side of posterior parts of cephalothorax and pedigers 2–4 finely wrinkled (Fig. 2B). Cephalothorax
expanded laterally, forming paired holdfasts covered with thin cuticular membrane. Rostrum (Fig. 2C) pointed at tip, with pair of fine hair-like sensilla anteriorly. First pediger incompletely incorporated into cephalon. Naupliar eyes present (Fig. 2A). Oral cone (Fig. 2D, E) produced ventrally, not forming elongate proboscis, with four ring-like structures (Fig. 2D); pair of buccal stylets positioned anteriorly (arrowed in Fig. 2D). Neck comprising pedigers 2–4, first urosomite and anterior part of trunk, 1.4 mm in length. Trunk (Figs 1C, 2A) 7.2 mm in length, about 2.2 times as long as cephalothorax and neck combined; paired gonopores located subterminally; abdomen highly reduced, furnished with minute prominences; caudal ramus (Fig. 2F) bilobate, outer and inner lobes bearing 2 and 4 setae, respectively. Egg string (Figs 1, 2A) straight, uniseriate, containing 65 eggs in left sac.

Antennule (Fig. 2G) incompletely 4-segmented, possibly many setal elements missing, probably during dissection. Antenna (Fig. 2H) heavily chitinized, 3-segmented; second segment ornamented with minute prominences on surface, remarkably produced into triangular subterminal process on inner margin, opposing tip of subchela formed by third segment; third segment curved inward, with minute basal element on anterior surface. Mandible (Fig. 2I) simple stylet with no teeth terminally. Maxillule (Fig. 2J, K) unilobate, inner lobe with two terminal setae of unequal length; outer lobe absent. Maxilla (Fig. 2L, M) 2-segmented; first segment (lacertus) unarmed; second segment (brachium) reflexed, with terminal third (calamus) smoothly curved inward, tapering distally, having 2 rows of spinular prominences on each side; canna subterminally located on second segment, small (arrow in Fig. 2M).

Legs 1–4 (Figs 3A–D) biramous, with 2-segmented rami; armature elements shown in Table 1; protopods with suture between coxa and basis distinctly visible; protopod and rami sparsely ornamented with minute spines on surface.

Remarks. The new species is easily distinguished from its poorly described congener, *P. multilobatus* (Lewis, 1959) by the morphology of the holdfast: simple in the former and rami filied in the latter. It differs from *P. gnavus* (Leigh-Sharpe, 1934) by the relative length of the trunk to the cephalothorax and neck combined (2.2 times in *P. nishikawai* n. sp. vs ca. 0.7 in *P. gnavus*).

Discussion

Members of the parasitic family Pennellidae have successfully colonized the deep-sea [5,8,49]. Colonization of pennellids into the deep-sea seems to have occurred repeatedly, because the most basal genus *Penniculus* is a shallow-water taxon [4,23,47] and more derived groups are

Figure 3. Protosarcotretes nishikawai n. g., n. sp., adult female (holotype). A. Leg 1, anterior surface; B. Leg 2, anterior surface; C. Leg 3, anterior surface, D. Leg 4, anterior surface. Scales in mm.
Table 2. Host-parasite relationships of pennellid copepods infecting deep-sea fish. Scientific names of fish hosts are based on FishBase (2017) [14].

<table>
<thead>
<tr>
<th>Parasitic copepod</th>
<th>Host family</th>
<th>Host species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcotretes cristiformis (Brian, 1908)</td>
<td>Sternoptychidae</td>
<td>Scopeloberyx malayanus (Weber), Scopeloberyx opisthopterus (Parr), Scopeloberyx robustus (Günther)</td>
<td>[9,13,18]</td>
</tr>
<tr>
<td>Sarcotretes longirostris Ho et al., 2004</td>
<td>Nomeida</td>
<td>Psenes pellucidus Luüken</td>
<td>[17]</td>
</tr>
<tr>
<td>Sarcotretes umitake Uyeno et al., 2014</td>
<td>Macrouridae</td>
<td>Coelorinchus jordani Smith & Pope</td>
<td>[46]</td>
</tr>
<tr>
<td>Lernaeenicus gonostonae K sensley & Grindley, 1973</td>
<td>Gonostomatidae</td>
<td>Sigmops elongatus (Günther)</td>
<td>[9]</td>
</tr>
<tr>
<td>Lernaeenicus quadridobatus Yamaguti & Utiumi, 1959</td>
<td>Myctophidae</td>
<td>Diaphus caeruleus (Klunzinger)</td>
<td>[50]</td>
</tr>
<tr>
<td>Protosarcotretes nishikawai n. g., n. sp.</td>
<td>Stomiidae</td>
<td>Chauliodus macouni Bean</td>
<td>Present study</td>
</tr>
<tr>
<td>Protosarcotretes gnatus (Leigh-Sharpe, 1934)</td>
<td>Sternoptychidae</td>
<td>Polipynus spinosus Günther</td>
<td>[26]</td>
</tr>
<tr>
<td>Protosarcotretes multilobatus (Lewis, 1959)</td>
<td>Gigantactinidae</td>
<td>Gigantactis sp.</td>
<td>[27]</td>
</tr>
<tr>
<td>Exopenna crimmeni (Boxshall, 1986)</td>
<td>Moriidae</td>
<td>Antimora rostrata (Günther)</td>
<td>[4]</td>
</tr>
</tbody>
</table>
Protosarcotretes may be characterized by the possession of such as Peniculus, Sarcotretes, Lernaeenicus [4,23] and Protosarcotretes may be characterized by the possession of a single host [7,20,23]. However, the number of developmental stages depends on the taxon. In Peniculus, Lernaeenicus and Peroderma two patterns with or without naupliar stages are recognized, i.e., 2 nauplii, 1 copepodid, 4 chalimi, and adult (in L. sprattae), and 1 copepodid, 4 chalimi, and adult (in P. minuticaudae, P. shiinoi, only hatching stages were observed [2,21], while in L. sprattae and P. minuticaudae all post-embryonic developmental stages were fully described [20,49]. In deep-sea pennellids, the hatching stage is an infective copepodid in C. bellottii (Richiardi, 1882) [36], but is unknown in Sarcotretes and Protosarcotretes. Clarification of the life cycle would be possible if embryos developed to before the hatching stage were to be found inside the egg strings.

Acknowledgements. We would like to express our sincere thanks to Dr. R. Böttger-Schnack for her translation of Heller’s (1865) German reference into English, and to Dr. B. A. Venmathi Maran for providing us with references on the Pennellidae. Thanks are due to Prof. Jun Nishikawa and the captain, crew and scientific party of the T/V Hokuto cruise. The photograph of the fresh, non-preserved animals was kindly provided by Mitsuko Hidaka-Umetsu. We also thank Dr. H. Yamamoto of the Research and Development Center for Submarine Resources, JAMSTEC, for his support, and Dr. M. Shimomura for his dealing with the materials of the parasitic copepod and its host.

Table 2. (continued).

<table>
<thead>
<tr>
<th>Parasitic copepod</th>
<th>Host family</th>
<th>Host species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiodectes bellottii (Richiardi, 1882)</td>
<td>Myctophidae</td>
<td>Diaphanus suborbitalis (as D. glandulifer)</td>
<td>[42]</td>
</tr>
<tr>
<td>Cardiodectes cristatus Shiino, 1958</td>
<td>Myctophidae</td>
<td>Diaphanus suborbitalis (as D. glandulifer)</td>
<td>[42]</td>
</tr>
<tr>
<td>Cardiodectes krishnai Sebastian, 1968</td>
<td>Phasichthyidae</td>
<td>Vinciguerra lucettia (Garman)</td>
<td>[9]</td>
</tr>
<tr>
<td>Cardiodectes longicervicus Shiino, 1958</td>
<td>Myctophidae</td>
<td>Myctophum apserum Richardson (as Dasiscopelus apser [sic])</td>
<td>[42]</td>
</tr>
<tr>
<td>Ophiolernaea longiceps Shiino, 1958</td>
<td>Sternoptychidae</td>
<td>Polygnus spinifer Borodulina</td>
<td>[42]</td>
</tr>
<tr>
<td>Parina myctophi Kazachenko & Avdeev, 1977</td>
<td>Myctophidae</td>
<td>Myctophum spinosum (Steindachner)</td>
<td>[9]</td>
</tr>
</tbody>
</table>

composed of a mixture of shallow- and deep-water taxa [4,23]. Host-parasite relationships in deep-sea taxa in the family are shown in Table 2. *Sarcotretes* and *Protosarcotretes* seem to be limited to deep waters, while only a few members of *Lernaeenicus* and *Cardiodectes* infect deep-sea fish. As already pointed out by Boxshall [5] and Boxshall & Halsey [8], *Sarcotretes scopeli* and *Cardiodectes bellottii* (Richiardi, 1882) (as *C. medusaeus* Wilson, 1908) exhibit low host-specificity, utilizing a wide range of fish families or genera. *Sarcotretes scopeli* infects eight families of fish, while *C. bellottii* parasitizes only Myctophidae. The Stomiidae host family utilized by *P. nishikawai* has only rarely been reported as a host of pennellids in contrast to the family Myctophidae. It is interesting to note that Stomiiformes is generally thought to be basal relative to the Myctophidae [45], mirroring the interesting to note that Stomiiformes is generally thought to be basal relative to the Myctophidae [45], mirroring the stage is an infective copepodid in *C. bellottii* (Richiardi, 1882) [36], but is unknown in *Sarcotretes* and *Protosarcotretes*. Clarification of the life cycle would be possible if embryos developed to before the hatching stage were to be found inside the egg strings.
References

s. ohtsuka et al.: Parasite 2018, 25, 6

Cite this article as: Ohtsuka S, Lindsay DJ, Izawa K. 2018. A new genus and species of the family Penellidae (Copepoda, Siphonostomatoida) infecting the Pacific viperfish Chauliodus macouni. Parasite 25, 6

An international open-access, peer-reviewed, online journal publishing high quality papers on all aspects of human and animal parasitology

Reviews, articles and short notes may be submitted. Fields include, but are not limited to: general, medical and veterinary parasitology; morphology, including ultrastructure; parasite systematics, including entomology, acarology, helminthology and protistology, and molecular analyses; molecular biology and biochemistry; immunology of parasitic diseases; host-parasite relationships; ecology and life history of parasites; epidemiology; therapeutics; new diagnostic tools.

All papers in Parasite are published in English. Manuscripts should have a broad interest and must not have been published or submitted elsewhere. No limit is imposed on the length of manuscripts.

Parasite (open-access) continues Parasite (print and online editions, 1994-2012) and Annales de Parasitologie Humaine et Comparée (1923-1993) and is the official journal of the Société Française de Parasitologie.