KML Generator

Seismic Tomographic Model

Description

This is a program to convert seismic tomographic data to the following KML files. By using this program, you can get a quick visual image of seismic tomographic model.

  • Figure: Horizontal/vertical cross section of global model

    Horizontal/vertical cross section of global model

  • Figure: Horizontal/vertical cross section of local model

    Horizontal/vertical cross section of local model

  • Figure: Horizontal/vertical cross section of a part of model

    Horizontal/vertical cross section of a part of model

  • Figure: Enlarged vertical cross section of a part of the mantle

    Enlarged vertical cross section of a part of the mantle

Instructions

The next only three steps you need to generate a KML file.

  1. Select seismic tomographic model.
  2. Select cross section you want to see, horizontal or vertical.
  3. If you select "horizontal cross sectin" at step 2, select a depth of the cross section.
    If you select "vertical cross section" at the step 2, select a line where indicates the location of the cross seciton.

Of course, you can set the range of velociy anomaly to obtain your best color scale.

Web application for the KML generator for seismic tomographic data

Supported models

The original tomographic models, now you can convert here, are as follows. We will support other models.

GAP-P1P wave global tomographic model.
Obayashi et al., 2006
FP2006S-ifreeS wave local tomographic model (beneath the South Pacific superswell, 130 degrees west ~ 180 degrees west, 10 degrees south ~ 30 degree south, down to a depth of 240 km).
Isse et al., 2006a
PHS2006S-ifreeS wave local tomographic model (beneath the Philippine Sea and the surrounding region, 120 degrees east ~ 150 degrees east, the equator ~ 42 degrees north, down to a depth of 240 km).
Isse et al., 2006b
PHS2009SS wave local tomographic model (beneath the Izu-Bonin-Mariana Arc region, 120 degrees east ~ 152 degrees east, 10 degrees south ~ 44 degrees north, down to a depth of 260 km).
Isse et al., 2009
SAW24B16S wave global tomographic model.
Mégnin and Romanowicz, 2000
TX2005S wave global tomographic model.
Simmons et al., 2006
S20RTSS wave global tomographic model.
Ritsema et al., 1999
S40RTSS wave global tomographic model.
Ritsema et al., 2011
MIT-P08P wave global tomographic model.
Li et al., 2008

The tomographic model data in JSON format

If you have a data file of tomographic model written in JSON format, you can convert the model data into KML. You can add your model to the models mentioned above by uploading the data file to the web application.

For the detail of the JSON format、please see the following web sites.

The web application supports the following data file; Both the reference velocities ("abbr":"VpMean" or "VsMean") and the velocities ("abbr":"Vp" or "Vs") are written in "measurables", or the velocity anomalies ("abbr":"dVp" or "dVs" and "units":"%") are written in "measurables". These values should be ordered by looping first over latitude, then over longitude.

Download samples

Informations

References
  • Obayashi, M., H. Sugioka, J. Yoshimitsu, and Y. Fukao, 2006. High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity, Earth and Planet. Sci. Lett. 243, 149-158.
  • Isse T., D. Suetsugu, H. Shiobara, H. Sugioka, K. Yoshizawa, T. Kanazawa, and Y. Fukao, 2006a. Share wave speed structure beneath the South Pacific superswell using broadband data from ocean floor and islands, Geophys. Res. Lett. 33, L16303, doi:10.1029/2006GL026872.
  • Isse, T., K. Yoshizawa, H. Shiobara, M. Shinohara, K. Nakahigashi, K. Mochizuki, H. Sugioka, D. Suetsugu, S. Oki, T. Kanazawa, K. Suyehiro, and Y. Fukao, 2006b. Three-dimensional shear wave structure beneath the Philippine Sea from land and ocean bottom broadband seismograms, J. Geophys. Res. 111, B06310, doi:10.1029/2005JB003750.
  • Isse T., H. Shiobara, Y. Tamura, D. Suetsugu, K. Yoshizawa, H. Sugioka, A. Ito, T. Kanazawa, M. Shinohara, K. Mochizuki, E. Araki, K. Nakahigashi, H. Kawakatsu, A. Shito, Y. Fukao, O. Ishizuka, and J. B. Gill, 2009. Seismic structure of the upper mantle beneath the Philippine Sea from seafloor and land observation: Implications for mantle convection and magma genesis in the Izu-Bonin-Mariana subduction zone, Earth and Planet. Sci. Lett. 278, 107-119, doi:10.1016/j.epsl.2008.11.032.
  • Mégnin, C., and B. Romanowicz, 2000. The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms, Geophys. J. Int. 143, 709-728.
  • Simmons, N. A., A. M. Forte, and S. P. Grand, 2006. Constraining mantle flow with seismic and geodynamic data: A joint approach, Earth and Planet. Sci. Lett. 246, 109-124, doi:10.1016/j.epsl.2006.04.003.
  • Ritsema, J., H. J. van Heijst, J. H. Woodhouse, 1999, Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland, Science 286, 1925-1928.
  • Ritsema, J., A. Deuss, H. J. van Heijst and J. H. Woodhouse, 2011, S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., doi:10.1111/j.1365-246X.2010.04884.x
  • Li, C., R. D. van der Hilst, E. R. Engdahl, S. Burdick, 2008, A new global model for P wave speed variations in Earth's mantle, Geochem. Geophys. Geosyst., 9, Q05018, doi:10.1029/2007GC001806.

Copyright © 2009 Japan Agency for Marine-Earth Science and Technology