First International Science and Planning Workshop on Years of the Maritime Continent 28-30 January 2015, Centre for Climate Research Singapore

Day 3 (Thursday, January 29) Session 7 Modeling

Regional nonhydrostatic models

International research collaborations and networking on extreme weather in changing climate in the MC

Shigeo Yoden (Kyoto U., Japan)

- International research collaborations and networking on extreme weather in changing climate in the MC
 - FY2015-2017 Japan Society for the Promotion of Science (JSPS) Core-to-Core Program: Asia-Africa Science Platforms
 - PI: Shigeo Yoden (Kyoto U.)
 - Japan: Kyoto U., JMA/MRI (K. Saito), Riken/AICS (T. Miyoshi)
 - Indonesia (T.W. Hadi, ITB), Singapore (T.-Y. Koh, NTU), Vietnam (T.T. Tran, VNU), and S/SE Asian countries
 - Numerical model studies with regional cloud-permitting nonhydrostatic models
 JMA NHM, WRF, DWD HRM,...
 - Observations and data analyses
 - Applications of probabilistic
 NWP data
 - for societal, economic, and environmental decisions

Science and application on synoptic-scale disturbances: cross-equatorial cold surge and Borneo vortex

description of the phenomena

> observations and data analyses

Note: reanalysis datasets have limitations due to the problem of model performance in the tropics

dynamical understanding

numerical model studies

on-off type experiments

Science

– GFD-style parameter sweep experiment with hierarchy of models

forecast experiment

Application

➢ pre-operational R&D phase of NHMs

– collaboration between operational center and university
 JMA/MRI – Kyoto U

• societal application for "needs"

> needs of operational forecasts (ensemble probabilistic data)

- disaster prevention/mitigation, economical decision, and more

An example: hindcast experiment of Borneo vortex

- similar to Trilaksono, Otsuka and Yoden (2011, 2012)
 - > Japan Meteorological Agency Non-Hydrostatic Model (Saito et al. 07)
 - Ax = 20 km, 115 x 103 grids; $0 \le z^* \le 22.1$ km, 40 levels
 - > 2007 Jan. 11 00:00 UTC ~ Feb. 09 23:00 UTC
 - ➤ 9 members of time-lagged ensemble runs
 - start every 6 h and use the period of 19 h \leq t \leq 72 h
- animation of two BV events
 - vertical component of relative forticity and horizontal winds

Dynamical uniqueness of cross-equatorial cold surge and Borneo vortex

- geographical asymmetry with the equator
 - → boreal winter
- around the equator $(f \sim 0)$
 - ➔ free from quasi-geostrophic balance
 - vertically independent "thin-layered" motions
- complex topography
 - → wind-terrain interaction
 - → multiple-scale variations
- Further studies in all aspects Should be necessary for better understanding the dynamics and their roles in the maintenance and variations of the MC monsoon

Science and application on synoptic-scale disturbances: cross-equatorial cold surge and Borneo vortex

description of the phenomena

> observations and data analyses

Note: reanalysis datasets have limitations due to the problem of model performance in the tropics

dynamical understanding

numerical model studies

- on-off type experiments
- GFD-style parameter sweep experiment with hierarchy of models

forecast experiment

- ➢ pre-operational R&D phase of NHMs
 - collaboration between operational center and university
 JMA/MRI Kyoto U
- societal application for "needs"

> needs of operational forecasts (ensemble probabilistic data)

- disaster prevention/mitigation, economical decision, and more

Self-organization of convective clouds in the tropics Interaction with complex topography and land-sea contrast, particularly in the Maritime Continent

2. Plan of participating in the YMC field campaign

In the MC countries, infrastructures in computations and internet communications have been improved largely in these years

It would be a good timing to start international research collaboration on numerical model studies of extreme weather events in the MC, such as

- cross-equatorial cold surge
- Borneo vortex

with high-resolution regional non-hydrostatic models

Multi-model and multi-analysis ensemble experiments will be possible through "cloud computing"

• with our own application servers and database storages

http://computer.howstuffworks.com/ cloud-computing/cloud-computing.htm The following subjects should be pursued under the YMC (1) Hindcast experiments on some typical events such as, cross-equatorial cold surge and Borneo vortex <a> to check and tune the performance of numerical models \rightarrow process oriented validation of numerical models to make detailed dynamical analyses (2) Near real-time forecast experiments in collaboration with the YMC observational campaigns, including <1> the design of adaptive observations <2> the assessment of their impact to improve the forecast (3) Geophysical Fluid Dynamics-oriented numerical experiments for better understanding the fundamental dynamics of cross-equatorial cold surge and Borneo vortex SPS Core-to-Core Program: Asia-Africa Science Platforms International Research Collaborations and Networking on Extreme Weather in Changing Climate in the MC (FY2015-17)

