Oceanic iron distribution of the global ocean estimated by data assimilation approach

海洋溶存鉄の Green 関数法を応用した 3次元分布再現について

Doi Toshimasa

Global Ocean Observation Research Center, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.

Introduction

Oceanic iron is considered as one of the restriction factors of the primary production.

Recently, we can identify the iron distribution along some observational sections covering a basin scale.

We constructed a useful gridded three-dimensional dissolved iron data by applying data assimilation approach.

The obtained gridded dissolved iron data is the dynamically consistent interpolated data in the spatially and temporally.

A simplified oceanic iron cycle model

$\frac{\partial dFe}{\partial t} = ADV(dFe) + DIFF(dFe) + SMS(dFe)$

dFe : dissolved iron

Referencing Moor et al. (2008) and Tagliabue et al. (2017)

Physical field

ESTOC (Estimated State of Global Ocean for Climate Research)

The dataset of 4-dimensional dynamical ocean state. Estimated by the ocean data assimilation system (4DVAR).

Region : quasi Global Ocean from 75°S to 80°N Horizontal Resolution : 1° × 1° Vertical Resolution : full depth range of 46 layer (45 layer + BBL) Dataset : monthly mean data from Jan. 1957 to Dec. 2011

> Monthly mean u, v, T, and S data from Jan. to Dec. in 1980 was employed as the off-line model.

dissolution

 $Ds_p = Rd_p \times Fe_p$: for POC $Ds_d = Rd_d \times Fe_d$: for Dust

Ds : amount of dissolution

- *Rd* : dissolution rate
- Fe : iron concentration in particulate

consumption

 $Cs = v_{chl} \times C_{chl}$

Cs : amount of dissolution v_{chl} : consumption rate C_{chl} : phytoplankton biomass

scavenging

 $scav = Sc \times dFe \qquad Moor \ et \ al. \ [2008]$ $Sc = Sc_b \qquad (dFe < LC)$ $Sc = Sc_b + (dFe - LC) \times C_{high} \qquad (dFe \ge LC)$ $Sc_b = Sc_p \times POC + Sc_d \times Dust$

Atmospheric dust data

MERRA-2 (The Modern-Era Retrospective analysis for Research and Applications, Version 2; Gelaro *et al.*, 2017)

Annual mean Dust Deposition from MERRA-2 data

10 years averaged (1980 \sim 1989) monthly mean dust flux at sea-surface

POC data SeaWiFS climatological monthly mean POC data.

Phytoplankton data

SeaWiFS climatological monthly mean chlorophyll-a data.

 \blacklozenge Iron source from sea floor

The region of the shelf was assumed at the sea floor up to 1000m.

Iron source from abyssal hydrothermal vent was omitted.

Observational Data

- GEOTRACES Intermediate Data Product 2017 Version 2 (Schlitzer et al., 2018)
- Compiled data by Tagliabue et al. (2015)

Horizontal map of the dissolved iron observational data (nmol L⁻¹) which was constructed by merge of the observational databases in the 1 degree model grid.

Data assimilation

Green's function approach Integrate the observation to iron cycle model

Cost Function :
$$J(x) = \frac{1}{2}[H(x) - y]^T R^{-1}[H(x) - y]$$

- **x** : control variable
- **y**: observation
- H: observation operator (including the model time integration)
- R : observation error covariance matrices

 $\hat{\mathbf{x}} = \mathbf{x}_b - (\mathbf{D}\mathbf{H}^T \mathbf{R}^{-1} \mathbf{D}\mathbf{H})^{-1} \times (\mathbf{D}\mathbf{H}^T \mathbf{R}^{-1} [H(\mathbf{x}_b) - \mathbf{y}])$

$$(DH)_j \cong \frac{\mathrm{H}(x_b + e_j) - \mathrm{H}(x_b)}{e_j}$$

 x_b : first guess e_j : perturbation of the *j*-th parameter

Data assimilation

Control variables

- 1 Desorption or dissolution rate from POC (%/day)
- 2 Desorption or dissolution rate from aeolian dust (%/day)
- 3 Sinking velosity of POC (m/day)
- 4 Sinking velosity of dust (m/day)
- 5 Scavenging rate by POC (L/µgC/day)
- 6 Scavenging rate by dust (L/µg/day)
- 7 Ligand concentration (nmol/L)
- 8 Proportional coefficient (L/nmol/day)
- 9 Consumption rate by phytoplankton (nmol/mgChl/day)
- 10 Supply rate from sea floor (nmol/m²/day)
- Executing control run and some perturbation experiments.
- Searching for an optimal set of model parameter values by minimizing the cost function.
- Conducting iterative procedure until stationary value of the cost.

Data assimilation

Scatter diagrams for the comparison between the result of optimized run and control run.

Estimated result

Horizontal map

Horizontal distribution of the dissolved iron concentration. The observations are shown by circle plot using the same color range.

Estimated result

Horizontal map

Horizontal distribution of the dissolved iron concentration. The observations are shown by circle plot using the same color range.

Vertical section

Estimated result

Vertical section plots of the dissolved iron distribution (nmol L⁻¹) for estimated result (upper) and observation (lower).

Estimated result

Vertical section

Vertical section plots of the dissolved iron distribution (nmol L⁻¹ for estimated result (upper) and observation (lower).

Concluding Remarks

- We constructed a useful gridded three-dimensional dissolved iron dataset in the global ocean by using both available observations and model.
- The observations are assimilated to a global oceanic iron cycle model by using a Green's function.
- Our estimation considerably succeeded in capturing the prominent features of each basin.
- We expect that analyzing these simple processes will help to solve the more realistic and more detailed processes to enhance the accuracy of the estimation for primary production and so on.