Inversion of spatio-temporal
variation in interplate slip rate
from repeating earthquakes
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Monitoring plate motion for earthquake prediction

B Acceleration of plate motion called a slow slip event was found
from 1 month before the 2011 Tohoku-oki earthquake (M9)

E Monitoring plate motion to find initiation of nucleation process is
important to predict huge earthquakes
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Inversion of interplate quasi-static slip rate

GPS observation is conventionally used for inversion of interplate
slip rate.

Repeating earthquakes on interplate subduction zone can be used
as complementary information to GPS data.
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Stochastic model for repeating earthquakes
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B On subducting interplate zones,
there are many asperities that induce
a sequence of characteristic
earthquakes. On the asperity, elastic
strain builds up by nearby static slip
until it reaches to the failure level.

B While large asperities repeat their slip
in tens or hundreds years, small ones
slip by several years. So they can be
used to monitor the change in quasi-
static slip rate around the asperities.
(c.f. Nadeau and McEvilly 1999)

E In this study, we propose a new
stochastic model for repeating
earthquake sequences to estimate
spatio-temporal variation of quasi- Asperity model (Tohoku Univ.)
static slip rate on the subduction zone
of Pacific Plate in Eastern Japan.
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Repeating microearthquakes in Parkfield, California

B High Resolution Seismic Network recorded microearthquakes of
magnitudes below M2 around the Parkfield area of San Andreas Fault in
California from 1987 to 2011.

B 31 repeating microearthquake sequences shown in indices from “A” to “e
are identified based on similarity of seismic waves by Nadeau et al., (1995)
and his subsequent works.
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Repeating microearthquakes in Parkfield, California

The 31 repeating microearthquake sequences have some spatio-temporal
trends in the relative length of their recurrence intervals, which imply
changes in stress loading rate caused by large seismic or aseismic events.

We introduce a non-stationary renewal process and estimate spatio-
temporal variation of relative stress loading rate.
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Renewal Process with BPT distribution

E Brownian Relaxation Oscillator (Matthews et al., 2002)
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Non-stationary stress loading process

B Extend the stress loading process by incorporating relative loading rate
v(X, Y, t) varying by location along the fault X, depth y and time t.

B Relative loading rate affects both stress loading and perturbation terms,
and thus distribution of recurrence intervals.
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Time transformation to stationary process

Non-stationary process Stationary process
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B-spline representation of relative loading rate

B We represent the relative loading rate function v(x, y, t) by using a cubic
B-spline function, which is a linear combination of local B-spline bases.

B Then, the set of coefficients for B-spline bases is the parameter to be
estimated.
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Parameter inference by penalized likelihood

B Consider M repeating earthquake sequences with distinct parameters
u = (Ug,..., 1y and a = (ay,..., ay) for distribution of recurrence times.

B Then, log likelihood of the M sequences is defined by
M
Iog L(,u,a,v) — Zlog L(lum7am’v(xm’ ym") | 1:ml’th’ '“’tmnm)'
m=1

B Parameters are estimated by maximizing the penalized log likelihood with
smoothness constrains:

logQ(u,a,v) =log L(u,a,v) —D(v W, -, W)
= Gaussian prior for & ;
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Repeating microearthquakes in Parkfield, California

B Using the proposed model, we estimated spatio-temporal loading rate
from the repeating earthquake sequences in the Parkfield area.

B We analyzed two periods before and after the 2004 Parkfield earthquake
of M6.0, separately.
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Depth (km)

Loadmg rate before the 2004 Parkfield M6  “

Acceleration of stress loading had
begun at depth with the M4.6 event
and propagated to the shallower zone
and then moved toward the
southeastern zone
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Repeating earthquakes after the 2004 Parkfield M6

B The 2004 Parkfield earthquake of M6.0 had triggered many repeating
earthquakes as its aftershocks whose frequency had decayed by time.

B If we transform time along the aftershock decay law, we can obtain
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Depth (km)

Loading rate after the 2004 Parkfield M6 °

We estimated the relative
loading rate in the
transformed time as shown
in the previous slide.

There still remain regional
differences in aftershock
triggering and decay.

The repeating events at
depth started after 20 days
from the mainshock.
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Introducing slip rate & amount into renewal model

Cumulative slip

Stress

Stress

1

(" )
Slip logd, =—-2.36+0.17log M,
Smount: (Nadeau and Johnson, 1998)
( )
Interval: t, ,—L = di /V
(Shimazaki and Nakata, 1980)
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Mean d; /v

0 Interval
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Time dependent slip rate model
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Cumulative slip
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Extension to space-time model

Cumulative slip
o
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B-spline bases with discontinuous points

B B-spline basis Nj3(r) is constructed by de Boor’s recursion formula:

N (r) = {1 (& =7 < G

0 otherwise

Sk — T

NE(r) =

B Adiscontinuous change point can be set by allocating 4 knots of B-spline

bases at the same point . .
Discontinuous change
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B-spline representation of slip rate change

We represent slip rate function v(x, y, t) by using a cubic B-spline function,
which is a linear combination of local B-spline bases.
Then, the set of coefficients for B-spline bases is the parameter to be

estimated.
V(X’ y,t) = exp{z ai,j,k Nig(x) N ?(y) le(t)}
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Allocate discontinuous points
(i.e. 4 overlapping knots) at

" occurrence times of large events
\in their afterslip regions

~_

Allocate additional knots
after large earthquakes
to represent rapid
change in afterslip rate




Dataset and Settings

Dataset

778 earthquake sequences with 2901
events repeating on subduction zone
from off North-Kanto to off Hokkaido

Magnitude range: M2.8~6.05
Observation period:1993.7.15 - 2011.3.10

Settings

B Estimate spatio-temporal variation in slip

rate by B-spline curve whose nodes are
arranged by 50km and 3 months.

Allocate discontinuous points (4 knots) at
occurrence time of large earthquakes in
their afterslip regions

Allocate additional knots at 1, 3, 10 and 30
days after large earthquakes
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Mean (left) and temporal change (right) of slip rate
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Spatial Distribution of Slip Rate
(before and after Off Sanriku-Haruka M7.6)
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Spatial Distribution of Slip Rate
(before and after Off Tokachi M8.0)
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Spatial Distribution of Slip Rate
(before and after Off Ibaraki M7.0)
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Comparison with GPS inversion (1996/6~2000/5)
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Summary

We proposed a new stochastic model for repeating earthquake sequences to
estimate spatio-temporal change in slip rate.

Periodicity of repeating earthquakes was conserved in the transformed time
even in rapid slip rate after the large earthquakes.

Acceleration of slip and its propagation was found from the estimated spatio-
temporal rate, which is difficult to see by other instruments. Such information
is important to reveal mechanism of earthquakes in a geophysical view

Estimated slip rate is basically consistent with slip-deficit rate inferred from
GPS observation. Our method is especially useful for the region far from GPS
network.



