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Motivation: bias in weather and climate models

Weather and climate models have model biases from various sources

• Truncation error
• Approximation of unresolved physical processes

- Convection
- Small-scale topography
- Turbulence
- Cloud microphysics

(From JMA website)



Treatment of forecast error in data assimilation
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http://www.data-assimilation.riken.jp/jp/research/index.html
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Treatment of imperfect model

Insufficient model error degrades the performance of Kalman filter

1. Covariance inflation

2. Correction of systematic bias component
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Relaxation-to-prior 

multiplicative inflation 

𝑷𝑎 → 𝑷𝑎 +𝑸
additive inflation 
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Bias correction with simple functional form

Dimensionality reduction can be applied 
using Singular Value Decomposition (SVD) (Danforth et al. 2007)

Set of training data {𝛿𝒙, 𝒙𝑓}
→  bias correction term 𝑫(𝒙) estimation

𝑫0 = Τ𝛿𝒙 Δ𝑡

𝑳𝒙′ = 𝑪𝛿𝒙,𝒙 𝑪𝒙,𝒙
−1𝒙′ ∕ Δ𝑡

𝑫 𝒙 = 𝑫0 + 𝑳𝒙′ 𝒙′ = 𝒙𝑓 − 𝒙
𝑓

Steady component

𝑪 : correlation matrix

Linearly-dependent component (Leith , 1978)

✓ “Offline” bias correction
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𝑑
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Simplest form: linear dependency



Bias correction with nonlinear basis functions

• Coupled Lorenz96 system (Wilks et al. 2005, Arnold et al. 2013)

• Real case: All-sky satellite infrared brightness temperature (Otkin et al. 2018)

Probability of (obs – fcst) vs obs

Higher order polynomials :

Neural networks :

• Coupled Lorenz96 system (Watson et al. 2019)

(Fig.2 of Otkin et al. 2018)



Online bias correction

• Kalman filter 

= Simultaneous estimation of state variables and bias correction terms 

- Polynomials (Pulido et al. 2018)

✓ “Online” bias correction

- Legendre polynomials
(Cameron and Bell, 2016; for Satellite sounding in UK Met Office operational model)

- Steady component (Dee and Da Sliva 1998, Baek et al 2006)

• Variational data assimilation (“VarBC”)

sequential treatment / augmented state

Penalty function for
bias-corrected obs error

Penalty function for
regularization



Localization

Localization is built-in in LETKF 

(Pathak et al. 2018, Watson et al. 2019)

Also in ML-based data driven modelling

✓ Reduced matrix size -> low cost 

In high dimensional spatiotemporal system,
geographically (and temporally) local interaction is usually dominant

✓ Highly effective parallelization
(Miyoshi and Yamane, 2007)

Also used in simultaneous parameter estimation
(Aksoy et al. 2006)

(Pathak et al. 2018)



The goal of this study

✓ ML-based online bias correction using Long-Short Term Memory (LSTM)

✓ Combined with LETKF with similar localization 

Test experiments with coupled Lorenz96 model

• Experimental Setup

• Online bias correction with simple linear regression as a reference

• (Online bias correction with LSTM)



bias correction in LETKF system
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Lorenz96 model

𝑑

𝑑𝑡
𝑥𝑘 = 𝑥𝑘−1 𝑥𝑘+1 − 𝑥𝑘−2 − 𝑥𝑘 + 𝐹

𝑥𝑘 𝑥𝑘+1

• 1-D cyclic domain
• Chaotic behavior for sufficiently large 𝐹

Wind @ 250hPa
NCEP GFS 

https://earth.nullschool.net/

(Lorenz 1996)

𝑘 = 1,2,… , 𝐾

𝑥 = 𝐹

𝐾 = 40, 𝐹 = 8

Largest Lyapunov exp.

Mean 𝑥 𝑡



Coupled Lorenz96 model
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“Nature run”

𝑑

𝑑𝑡
𝑥𝑘 = 𝑥𝑘−1 𝑥𝑘+1 − 𝑥𝑘−2 − 𝑥𝑘 + 𝐹 + 𝐴 sin 2𝜋

𝑘

𝐾

Forecast model (Danforth and Kalnay, 2008)

Coupling terms

Multi-scale interaction 

𝑦1 𝑦𝐽

Parameters used in this study：

(Wilks, 2005)

… …

(𝐾 = 8)

Large scale (Slow) variables

Small scale (fast) variables

𝐾 = 16, 𝐽 = 16

ℎ = 1, 𝑏 = 20, 𝑐 = 50

𝐹 = 16, A = 1



Data assimilation experiment

Observation operator：identical（obs = model grid）

Error standard deviation： 0.1

Interval: 0.025 / 0.05 / 0.1 (cf: doubling time ≃ 0.2)

Member： 20
Localization： Gaussian weighting  (length scale = 3 grids) 

Covariance inflation: multiplicative (factor: 𝛼)

Obs interval Minimum RMSE Inflation 𝛼

0.025 0.0760 2.9

0.05 0.0851 5.8

0.1 0.0902 15.0

“Observation”

LETKF configuration 

Large inflation factor 𝛼 is needed to stabilize DA cycle

“Nature run”  + random error

“Control run”: Data assimilation without bias correction



Example: simple linear regression
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Online bias correction by linear regression

𝛽 = 0.02, 𝛾 = 0.999 (half-life: ~37) 𝒙𝒇

𝒙𝒂 − 𝒙𝒇

෥𝒙𝒇 − 𝒙𝒇 :correction

𝒙𝒂 − 𝒙𝒇 has large negative correlation with 𝒙𝒇

Interval (day) Min. infl. RMSE

0.025 2.9 0.0760

0.1 15.0 0.0902

Interval (day) Min. infl. RMSE

0.025 2.0 0.0625

0.1 8.2 0.0849

and mostly offset by bias correction term 

Stable with smaller inflation factor 𝛼



Correction term

Time 0-30 120-150

240-270 360-390

Bias: Forecast(before correction)-analysis
Correction 



Nonlinear bias correction with ML
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Plan: LSTM implementation

• Activation:
tanh / sigmoid(recurrent)

LSTM 

• No regularization / dropout

𝒙𝑡
𝑓
, 𝒙𝑡

𝑎

Input

𝒙𝑡−Δ𝑡
𝑓

…𝒙𝑡
𝑓

nx=9, nt=5

Output
𝒙𝑡
𝑎

nx=1

LSTM
nx=15

Dense
nx=10

Dense
nx=5

Lorenz96
LETKF ෥𝒙𝑡

𝑓

Python TensorFlow
Tensorflow LSTM is implemented and 
integrated with LETKF codes

Network architecture 

• 1 LSTM + 3 Dense layers

• LETKF-like Localization

Input : localized area

Output : one grid point



Summary

• LSTM-based bias correction is implemented and to be tested 

• The efficiency of localization ?

• Systematic model bias degrades forecasts and analysis

• “Online” bias correction with data assimilation has been studied 
using a fixed basis function set

• “Offline” bias correction can be performed by ML as nonlinear regression

• Online learning ?


