Application of machine learning methods to model bias correction: Lorenz-96 model experiments

Arata Amemiya*, Takemasa Miyoshi

Data Assimilation Research Team, RIKEN Center for Computational Science

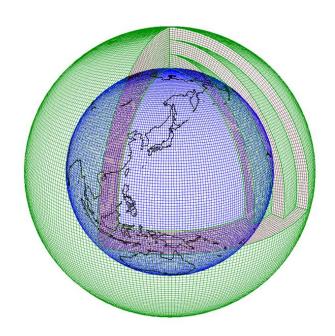
Shlok Mohta

Graduate School of Science, the University of Tokyo

Motivation: bias in weather and climate models

Weather and climate models have model biases from various sources

- Truncation error
- Approximation of unresolved physical processes
 - Convection
 - Small-scale topography
 - Turbulence
 - Cloud microphysics



Treatment of forecast error in data assimilation

Kalman filter

Update state and forecast error covariance

$$\boldsymbol{x}_{t+1}^f = \boldsymbol{\mathcal{M}}(\boldsymbol{x}_t^a)$$

$$\boldsymbol{P}_{t+1}^f = \boldsymbol{M} \boldsymbol{P}_t^a \boldsymbol{M}^T \qquad \boldsymbol{M} = \partial \boldsymbol{\mathcal{M}} / \partial \boldsymbol{x}$$

Calculate Kalman gain

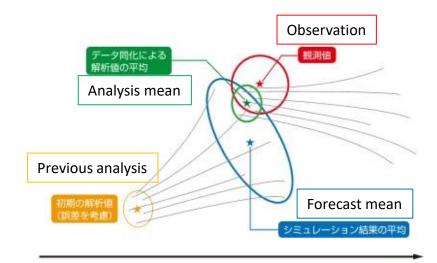
$$K = P^f H^T (HP^f H^T + R)^{-1}$$

Calculate analysis state and error covariance

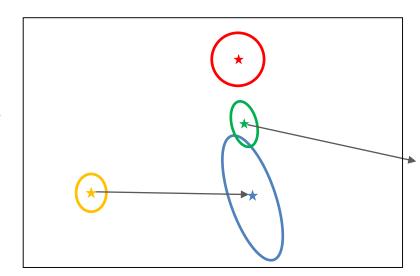
$$\mathbf{x}^a = \mathbf{x}^f + \mathbf{K}(\mathbf{y} - H(\mathbf{x}^f))$$

$$\mathbf{P}^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^f$$

Model bias leads to the underestimation of forecast(background) error



http://www.data-assimilation.riken.jp/jp/research/index.html



Treatment of imperfect model

Insufficient model error degrades the performance of Kalman filter

1. Covariance inflation

additive inflation

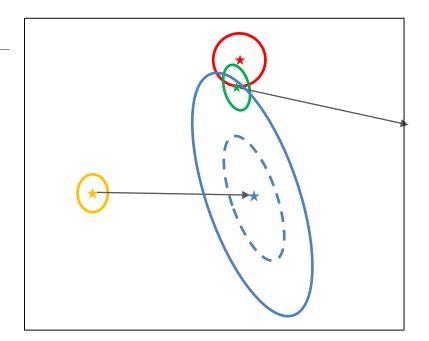
$$P^a \rightarrow P^a + Q$$

multiplicative inflation

$$P^a \rightarrow \alpha P^a$$

Relaxation-to-prior

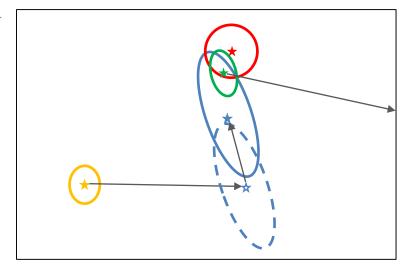
$$P^a \rightarrow (1-\alpha) P^a + \alpha P^f$$



2. Correction of systematic bias component

$$\widetilde{\boldsymbol{x}}_{t+1}^f = \boldsymbol{x}_{t+1}^f + \boldsymbol{b}$$

$$\boldsymbol{x}_{t+1}^{a} = \widetilde{\boldsymbol{x}}_{t+1}^{f} + \boldsymbol{K} \left(\boldsymbol{y}_{t+1} - H(\widetilde{\boldsymbol{x}}_{t+1}^{f}) \right)$$



Bias correction with simple functional form

✓ "Offline" bias correction

$$\frac{d}{dt}x = \boldsymbol{f}_{\text{model}}(x) + \boldsymbol{D}(x)$$

Set of training data $\{\delta x, x^f\}$

 \rightarrow bias correction term D(x) estimation

$$\frac{d}{dt}x = f_{\text{true}}(x) \longrightarrow x^{t}(t), x^{t}(t + \Delta t) \dots$$

$$\frac{d}{dt}x = f_{\text{model}}(x) \longrightarrow x^{f}(t + \Delta t)$$

$$\delta x = x^{t}(t + \Delta t) - x^{f}(t + \Delta t)$$

Simplest form: linear dependency

$$D(x) = D_0 + Lx'$$

$$x' = x^f - \overline{x}^f$$

C: correlation matrix

$$\mathbf{D}_0 = \overline{\delta \mathbf{x}} / \Delta t$$

Steady component

$$Lx' = C_{\delta x, x} C_{x, x}^{-1} x' / \Delta t$$

Linearly-dependent component (Leith, 1978)

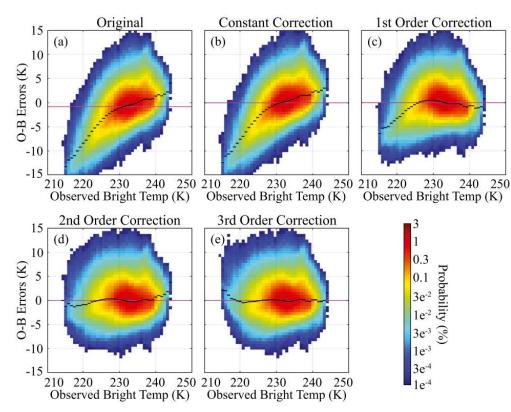
Dimensionality reduction can be applied using Singular Value Decomposition (SVD) (Danforth et al. 2007)

Bias correction with nonlinear basis functions

Higher order polynomials:

- Coupled Lorenz96 system (Wilks et al. 2005, Arnold et al. 2013)
- Real case: All-sky satellite infrared brightness temperature (Otkin et al. 2018)

Probability of (obs – fcst) vs obs



Neural networks:

(Fig.2 of Otkin et al. 2018)

Coupled Lorenz96 system (Watson et al. 2019)

Online bias correction

- ✓ "Online" bias correction
 - = Simultaneous estimation of state variables and bias correction terms
 - Kalman filter
 sequential treatment / augmented state
 - Steady component (Dee and Da Sliva 1998, Baek et al 2006)
 - Polynomials (Pulido et al. 2018)
 - Variational data assimilation ("VarBC")
 - Legendre polynomials (Cameron and Bell, 2016; for Satellite sounding in UK Met Office operational model)

$$J_o = \frac{1}{2} \sum_k \left(\left(y_k + \sum_{i=1}^{I_k} \beta_i' p_{k,i} - y_k^o \right) R_k^{-1} \left(y_k + \sum_{j=1}^{I_k} \beta_j' p_{k,j} - y_k^o \right) \right) \quad \text{Penalty function for bias-corrected obs error}$$

$$J_\beta = \frac{1}{2} \sum_{i=1}^{I_k} \beta_i'^T V_{(\beta_i)}^{-1} \beta_i' \quad \text{Penalty function for regularization}$$

Localization

In high dimensional spatiotemporal system, geographically (and temporally) local interaction is usually dominant

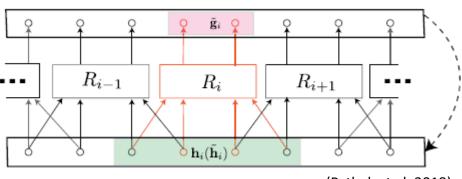
Localization is built-in in LETKF

- ✓ Reduced matrix size -> low cost
- ✓ Highly effective parallelization (Miyoshi and Yamane, 2007)

Also used in simultaneous parameter estimation (Aksoy et al. 2006)

Also in ML-based data driven modelling

(Pathak et al. 2018, Watson et al. 2019)



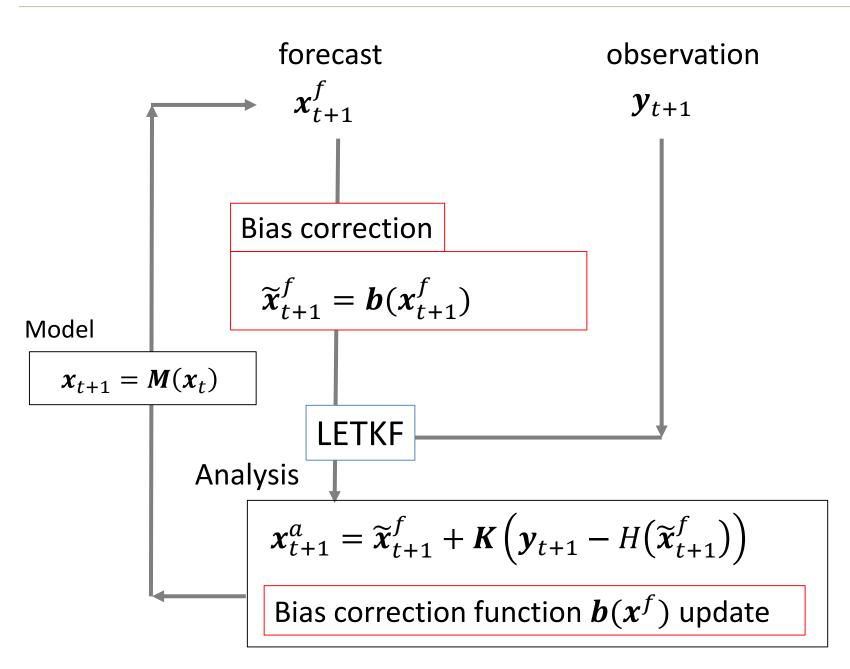
The goal of this study

- ✓ ML-based online bias correction using Long-Short Term Memory (LSTM)
- ✓ Combined with LETKF with similar localization.

Test experiments with coupled Lorenz96 model

- Experimental Setup
- Online bias correction with simple linear regression as a reference
- (Online bias correction with LSTM)

bias correction in LETKF system



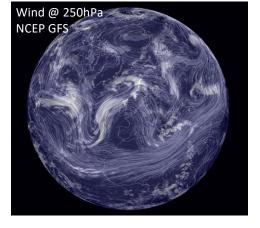
Lorenz96 model

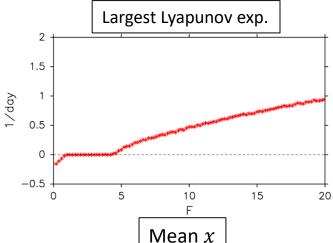
$$\frac{d}{dt}x_k = x_{k-1}(x_{k+1} - x_{k-2}) - x_k + F \qquad k = 1, 2, ..., K$$

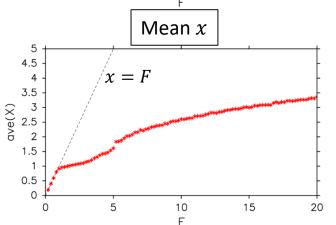
$$k=1,2,\ldots,K$$

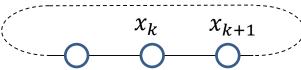
(Lorenz 1996)

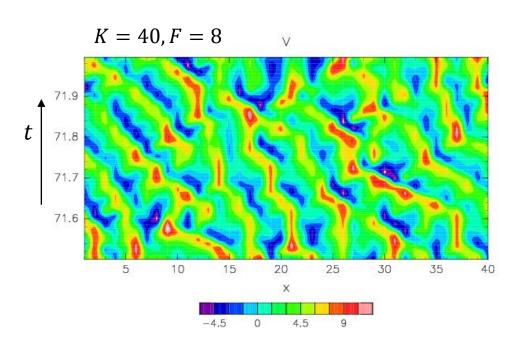
- 1-D cyclic domain
- Chaotic behavior for sufficiently large F











Coupled Lorenz96 model

Multi-scale interaction

"Nature run"

Large scale (Slow) variables

$$\frac{d}{dt}x_k = x_{k-1}(x_{k+1} - x_{k-2}) - x_k + F - \frac{hc}{b} \sum_{j=J(k-1)+1}^{kJ} y_j$$

Small scale (fast) variables

$$\frac{d}{dt}y_{j} = -cb \ y_{j+1}(y_{j+2} - y_{j-1}) - cy_{j} + \frac{hc}{b} x_{\text{int}[(j-1)/J]+1} \qquad j = 1, 2, ..., KJ$$

Forecast model

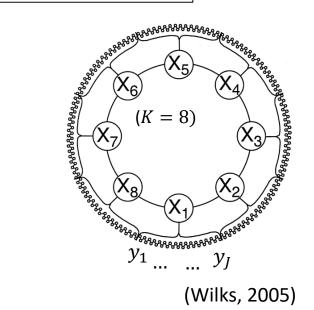
(Danforth and Kalnay, 2008)

$$\frac{d}{dt}x_k = x_{k-1}(x_{k+1} - x_{k-2}) - x_k + F + A\sin\left(2\pi \frac{k}{K}\right)$$

Parameters used in this study:

$$K = 16, J = 16$$

 $h = 1, b = 20, c = 50$
 $F = 16, A = 1$



k = 1, 2, ..., K

Data assimilation experiment

"Observation"

"Nature run" + random error

Observation operator: identical (obs = model grid)

Error standard deviation: 0.1

Interval: 0.025 / **0.05** / 0.1 (cf: doubling time $\simeq 0.2$)

LETKF configuration

Member: 20

Localization: Gaussian weighting (length scale = 3 grids)

Covariance inflation: **multiplicative** (factor: α)

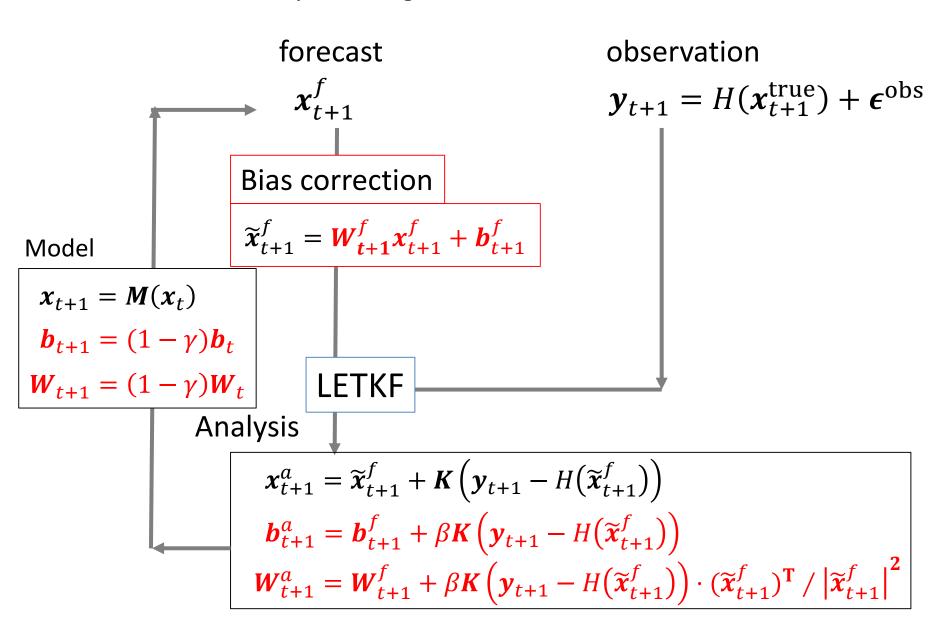
"Control run": Data assimilation without bias correction

Large inflation factor α is needed to stabilize DA cycle

Obs interval	Minimum RMSE	Inflation $lpha$
0.025	0.0760	2.9
0.05	0.0851	5.8
0.1	0.0902	15.0

Example: simple linear regression

Online bias correction by linear regression



Online bias correction by linear regression

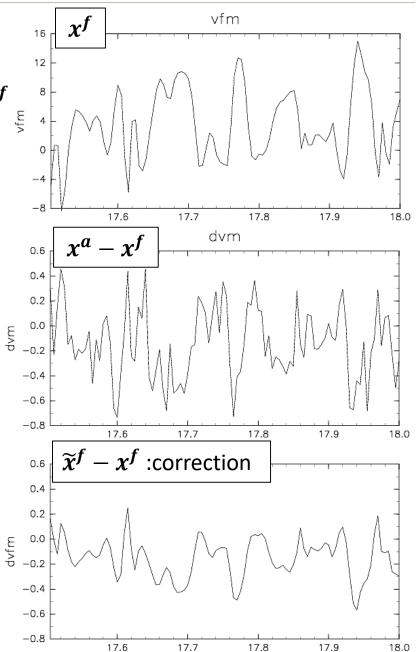
 $\beta = 0.02, \gamma = 0.999$ (half-life: ~37)

 $x^a - x^f$ has large negative correlation with x^f and mostly offset by bias correction term

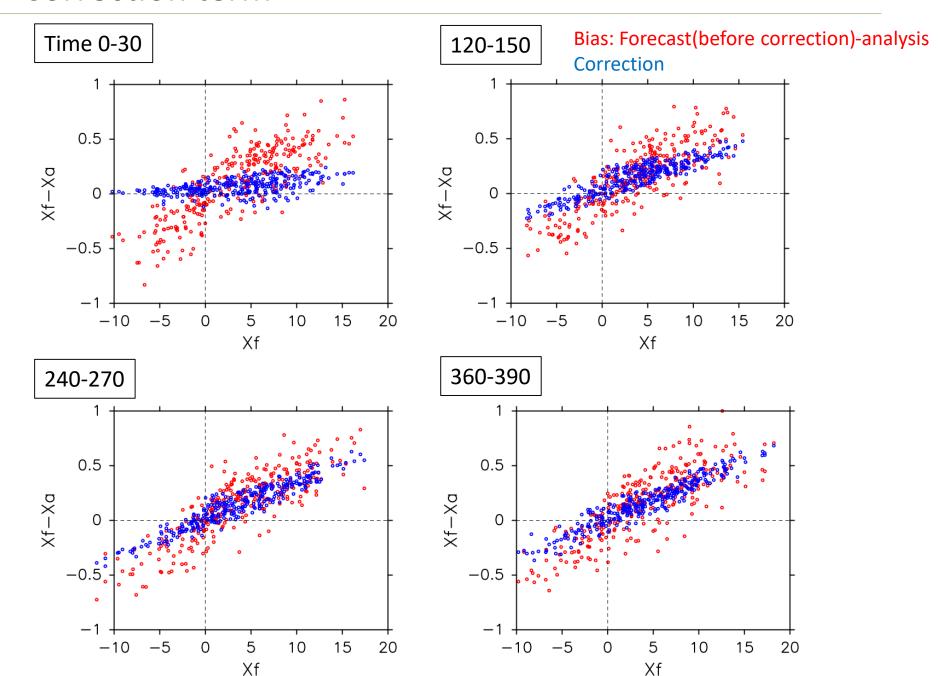
Stable with smaller inflation factor α

Interval (day)	Min. infl.	RMSE
0.025	2.9	0.0760
0.1	15.0	0.0902

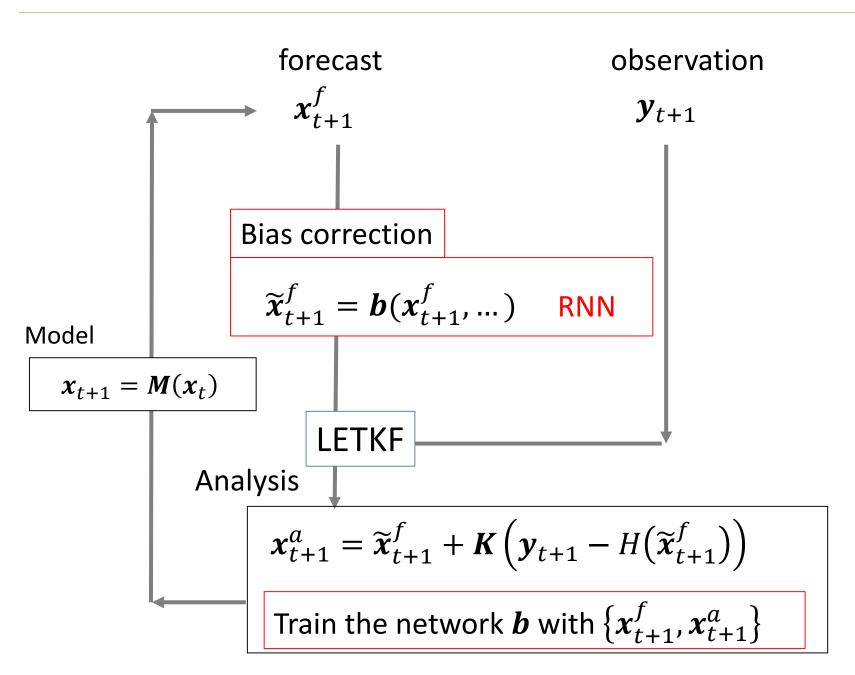
Interval (day)	Min. infl.	RMSE
0.025	2.0	0.0625
0.1	8.2	0.0849



Correction term

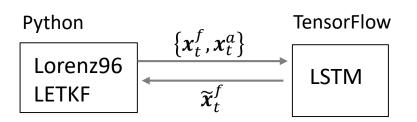


Nonlinear bias correction with ML



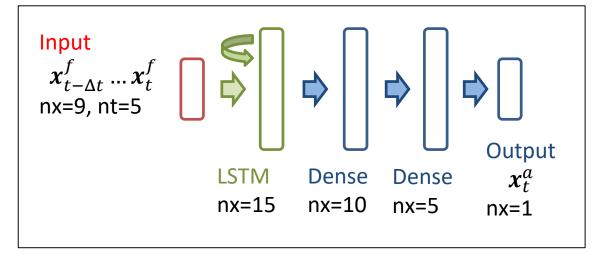
Plan: LSTM implementation

Tensorflow LSTM is implemented and integrated with LETKF codes



Network architecture

- 1 LSTM + 3 Dense layers
- Activation: tanh / sigmoid(recurrent)
- No regularization / dropout
- LETKF-like Localization
 Input: localized area
 Output: one grid point



Summary

- Systematic model bias degrades forecasts and analysis
- "Offline" bias correction can be performed by ML as nonlinear regression
- "Online" bias correction with data assimilation has been studied using a fixed basis function set
- LSTM-based bias correction is implemented and to be tested
 - The efficiency of localization ?
 - Online learning?