On climate information for Crop Modeling

Hirofumi Sakuma APL/CVPARP YES/JAMSTEC

(Potential) Collaborators: National Institute for Agro-Environmental Sciences, Japan International Research Center for Agricultural Sciences, Tottori Univ., Univ. of the Free State and ARC.

Outline of talk

- Background & recent activities in Japan.
- > Major issues in coupling climate and crop models.
- > Brief introduction of Bayesian statistics.
- > On large-scale crop model based on BS.
- Introduction of a recent work done in climate change research, which must be applied to shortterm climate variations problem.
- Short remarks on the relation with SATREPS SA.

Background

Climate-related risk management in agricultural production is an important issue for the world community

Recent (Japanese) activities in this field cover:

- I. Probabilistic impact assessment considering uncertain factors both in climate and agricultural activities.
- II. Creation of climate change scenario around Japan and associated impact studies on rice production.
- III. Development of large-scale crop model utilizing Bayesian approach.

Experimental Design

Major issues in coupling climate and crop models

- For actual risk assessment, climate variations or seasonal data with spatio-temporarily fine resolution is necessary.
- The order of horizontal resolution state-of-the-art high resolution CGCMs employ is 110~300km, which is quite coarse from the viewpoint of application.
- \succ CGCMs output have bias to be removed.
- Suitable downscaling becomes necessary which provides sufficiently high resolution as well as bias-reduced output.
- There are couple of downscaling methods which have both merits and demerits.
- In evaluating downscaling techniques, some preliminary studies had performed as a part of IPCC activities in Japan.

On Bayes' Theorem

A distinct characteristics of Bayesian statistics is that it gives the probability of causes: $P(H_i|A)$ for a given event A

Let Ω be a sample space (on which σ -algebra is defined) of the union of causes H_i for certain event A, that is to say, H_i is the partition of Ω ,

$$H_i \cap H_j = \phi \quad ; \quad H_1 \cup H_2 \cup \dots \cup H_k = \Omega$$

On Bayes' Theorem (continued)

then, Bayes' theorem says that the inverse (or posterior) probability is $P(H_i|A)$ given by

$$P(H_i|A) = \frac{P(H_i)P(A|H_i)}{\sum_j P(H_j)P(A|H_j)}$$

In most cases, we know $P(A | H_i)$ rather than $P(H_i | A)$

Correspondence

Probability Theory	Statistics
H_i : Cause	population parameter
A : Event	Sample
$P(A \mid H_i)$:	Likelihood
Conditional Probability	

Notion of Bayesian Updating:

In Bayesian statistics, utilizing the series of the occurrence of events A_k , posterior probability $P(H_i|A_k)$ is "updated" starting from a prior probability $P(H_i)$.

Example : spam mail filter

$P(spam|word) = \frac{P(spam)P(word|spam)}{P(word)}$

On large-scale crop model based on BS (Parameters in large-scale crop must be different from those in field-scale models)

- 1) Phenological development components (flowering, heading, maturity are influenced by environmental conditions and characteristics of cultivar. Large-scale model attempts to simulate a typical phonological development *averaged over* cultivars, cultivation practices and local climate conditions.
- 2) Dry matter production components (leaf area index etc.)
- 3) Yield formation components (high and low temperature stresses are included in this component)

Difficulties in crop yield simulation on a large-scale

- \succ A field-scale \rightarrow Climate-model grid-scale
 - (\approx tens meters) \rightarrow (\approx hundreds kilometers)
- Spatial heterogeneity of cultivation management
 - Cultivar, crop calendar, timings and intensities of irrigation and fertilization etc.
- Data limitation
 - Availability is limited for spatially-detailed data on cultivation management and its time change;
 - Spatially-fine data derived from remote sensing has a potential but its time period is limited
- How to model the spatial- and temporal-variation of crop yield on a large-scale?

Methodologies to model crop yield on a large-scale

- > Omit the spatially-fine processes
 - Regression models (Lobell and Asner 2003)
 - Empirical approach e.g., AEZ (Fischer et al. 2002)
- Develop a new large-scale model
 - Process-based but simple enough to avoid the need for many location-specific inputs
 - GLAM (Challinor et al., 2004)
 - Hasegawa et al. (2008)
 - MCWLA (Tao et al., 2009)
- Upscale a existing smaller scale model
 - Re-calibrate a field-scale model with inputs on a large-scale and inclusion of spatial heterogeneity
 - PRYSBI (lizumi et al., 2009a)
 - GSWAT (the U.S. crop model)

Modeling prefectural paddy rice yield in Japan

(Horie et al., 1995)

Parameters analyzed

Abbr.	Definition
DVI_0 (day ⁻¹)	Initial developmental index (DVI)
G (day)	Minimum number of days required for heading under 350 ppm of atmospheric CO_2 concentration
$A_T(-)$	Sensitivity of developmental rate (DVR) to air temperature
T_h (°C)	Air temperature at which DVR is half of the maximum rate at the optimum temperature
$B_L(-)$	Sensitivity of DVR to day length
L_c (hr)	Critical day length
DVI^* (day ⁻¹)	Value of DVI at which point the crop becomes sensitive to the photoperiod
$LAI_{0}(-)$	Initial leaf area index
$DW_0 ({ m g m}^{-2})$	Initial dry weight
<i>T</i> [*] (°C)	Base air temperature for calculating cooling degree days
$C_{cool}(-)$	Curvature factor of spikelet sterility caused by low temperature
<i>C</i> _{<i>hot</i>} (-)	Curvature factor of spikelet sterility caused by high temperature
τ (-)	Technical coefficient

Markov Chain Monte Carlo (MCMC) technique

Bayes' theorem

- Application of Metropolis-Hastings (M-H) algorithm
 - Calibration: 13 odd-years (1979, 1981, ..., 2001, 2003);
 - Verification: 25 years (1979-2003)

Obtained posterior distributions of parameter values

(Ex. Aomori)

Perturbed-parameter ensemble approach

Heading day

(Ex. Aomori)

Heading day

(Ex. Aomori)

SATREPS SA

South African (C)GCM

Regional Climate Model Field-scale Crop Model SINTEX-F Model Large-scale Crop Model

Regional Climate Model UT Coupled model Field-scale Crop Model

Summary

- The posterior distributions of parameter values were estimated by using the MCMC technique;
- The obtained posteriors includes the information on spatial heterogeneity on a large-scale under given data;
- The perturbed-parameter ensemble approach gives better simulation result than the use of posterior means; this suggests the adequacy of ensemble approach to express the spatial heterogeneity.