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Abstract
In this review, we discuss site-specific carbon isotopic compositions of chlorophylls 

with special reference to their biosynthetic pathways in the cell.  The carbon isotopic 
composition is ultimately inherited from glutamic acid, a major amino acid in the 
cell.  Intramolecular (site-specific) carbon isotopic distributions of geoporphyrins, 
geological derivatives of the tetrapyrrole nuclei of various chlorophylls in sediments 
and sedimentary rocks, are thus potentially useful for investigating the carbon cycle 
in the geological past.  As a case study, we report analytical results for the mean 
carbon isotopic compositions of the methine bridge carbons (i.e., C―5, C―10, C―
15, and C―20 positions in the tetrapyrrole structure) in geoporphyrins derived from 
chlorophylls a and c in the Miocene Onnagawa Formation, Japan.  The results 
suggest that β-carboxylation was not an important process for carbon assimilation 
of photoautotrophs during the formation of this sediment.  Although substantial 
biogeochemical information is recorded as isotopomeric signatures of sedimentary 
tetrapyrroles, we are still just beginning to explore its potential, and further experiments 
are necessary to establish this approach as a robust tool for biogeochemistry.

INTRODUCTION

This review concerns with the isotopomers (i.e., site-specific or intramolecular carbon 
isotopic compositions) as well as bulk carbon isotopic compositions of chlorophyll and 
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strongly suggested that diazotrophic (i.e., N2-fixing) cyanobacteria were significant primary 
producers during the formation of certain petroleum source rocks.

In this review, we focus on the topic how the carbon isotopic composition of chlorophylls 
is controlled in the photoautotrophic cell, a fundamental concern when interpreting 
the isotope record of tetrapyrrole structures in natural materials including sediments.  
Furthermore, we demonstrate that the intramolecular carbon isotopic compositions of 
chlorophylls and their derivatives, such as sedimentary porphyrins (sometimes called 
geoporphyrins, petroporphyrins, or metalloalkylporphyrins), can provide critical information 
and profound insights into biogeochemical processes.

Chlorophylls and bacteriochlorophylls: structures and distribution

We begin with a brief overview of the chemical structures and natural distributions of 

bacteriochlorophyll nuclei in terms of metabolic processes.  Among the various types of 
tetrapyrroles produced by organisms, chlorophylls are far more abundant, widespread, and 
obvious biological molecules in photoautotrophic organisms.  Chlorophyll is an essential 
part of the photosynthetic apparatus and functions as a light energy-harvesting pigment.

The advantages of chlorophyll as a tool for biogeochemical and geological studies are 
threefold.  First, chlorophylls have various chemical structures that are correlated with 
major photoautotrophic groups.  Therefore, the structural variations and relative abundances 
of chloropigments in the natural environment provide first-order diagnostic information on 
the components of the photoautotrophic community.  For example, if abundant chlorophyll 
b or its derivatives are observed in a given horizon of lake sediment, you can tell that 
the green algae were among the primary photoautotrophs in the lake when the sediment 
was formed.  Second, chlorophyll contains both carbon and nitrogen atoms whose stable 
isotopic compositions (i.e., 13C/12C and 15N/14N ratios) provide valuable information about 
biogeochemical processes associated with assimilation and metabolism of these elements, 
allowing reconstruction of the surface water environment where the compounds were 
produced.  Because most biomarkers widely used for investigation of the contemporary 
environment or paleoenvironment do not contain nitrogen, nitrogen isotopic record of 
chlorophylls uniquely contributes to understanding environmental processes related to the 
nitrogen cycle.  Third, the tetrapyrrole nuclei of chlorophylls are well preserved in sediments 
and sedimentary rocks, oil shales, and even crude oil (e.g., Treibs 1934, 1936; Blumer 
1965; Baker and Louda 1986; Eckardt et al. 1991; Callot and Ocampo 2000; Kashiyama et 
al. 2007b).  Therefore, they are of particular interest for reconstruction of biogeochemical 
processes in the geological past.  Despite these merits, chlorophyll abundance and their 
isotopes have been measured in relatively a limited number of studies from only a few 
laboratories (Hayes et al. 1987; Madigan et al. 1989; Popp et al. 1989; Katase and Wada 
1990; Bidigare et al. 1991; Chicarelli et al. 1993; Sachs et al. 1999; Beaumont et al. 2000; 
Ohkouchi et al. 2006; Sato et al. 2006).  It is mainly because 1) it requires time-consuming, 
tedious chemical/analytical procedures for isolation and purification of the chlorophylls 
(and their derivatives) from the complex mixtures of organic molecules in natural materials, 
and 2) the measurement of stable isotopic compositions can only be achieved by a classical 
off-line method rather than a conventional on-line method (e.g., Hayes et al. 1990; Meier-
Augenstein 1999).

We have recently improved the isolation/purification protocol for chlorophylls and their 
diagenetic derivatives from sediments and particulate organic matter in the water column for 
precise, rapid determination of carbon and nitrogen isotopic compositions (e.g., Ohkouchi 
et al. 2005; Chikaraishi et al. 2005, 2008; Kashiyama et al. 2007a).  Although the method 
still employs (automatic) fraction collection of chlorophylls using high-performance liquid 
chromatography (HPLC) followed by off-line measurement of isotopic compositions, it 
provides a strict analytical basis for studying the utility of these signatures.  We have applied 
this method to several sedimentary rocks to better understand the surface water environment 
during their formation in the geological past (Kashiyama et al. 2008a, b).  These results 
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Fig. 1.  Chemical structures of representative chlorophylls (a, b, c1, and d) and bacteriochlorophylls (a, b, 
c1―3, d1―3, e1―3, and g). All chlorophylls are composed of four pyrroles, or “tetrapyrrole.”
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other chlorophylls in that they have a fully unsaturated, symmetric porphyrin nucleus 
rather than a chlorin nucleus (e.g., Zapata et al. 2006).  These chlorophylls have propenoic 
acid at the C―17 position, instead of the phytol esterified propionic acid side chain of the 
other chlorophylls (Fig. 1).  Chlorophyll c occurs in the primary aquatic photoautotrophs, 
including diatoms, dinoflagellates, brown algae, and haptophytes, accompanying chlorophyll 
a (Table 1).

Chlorophyll d was originally discovered in red macroalgae over 60 years ago, as 
the fourth type of chlorophyll (Manning and Strain 1943).  The molecular structure of 
chlorophyll d is similar to chlorophyll a; a vinyl group at the C―3 position of chlorophyll 
a is replaced with a formyl group (Fig. 1).  However, it was long erroneously considered 
a laboratory artifact.  In 1996, it was re-discovered in the symbiotic cyanobacterium 
Acaryochloris marina from coralline (Miyashita et al. 1996).  Recently, Kashiyama et 
al. (2008c) reported it in various natural aquatic environments, including freshwater and 
hypersaline lakes, strongly suggesting an ubiquitous distribution in the aquatic environment.

Bacteriochlorophylls are found in prokaryotic photosynthetic bacteria and heliobacteria.  
These photoautotrophs conduct anoxygenic photosynthesis; they use hydrogen sulfide 
rather than water as an electron donor, and thus produce elemental sulfur (S0) rather than 
molecular oxygen (O2) as the byproduct of photosynthesis.  Purple bacteria synthesize 
either bacteriochlorophyll a or b (Table 1).  These bacteriochlorophylls are different 
from chlorophylls in that they have a bacteriochlorin rather than chlorin nucleus (Fig. 1).  
Furthermore, they contain a C20 phytol side chain rather than a C15 farnesol.

Bacteriochlorophylls c, d, and e are produced only by green photosynthetic bacteria, all 

chlorophylls, an important group of tetrapyrroles (i.e., compounds containing four pyrroles 
or nitrogen-containing five-membered rings) produced in the cell.  The chlorophylls vary 
widely in chemical structure, from chlorophyll a to d, and from bacteriochlorophyll a 
to g (Fig. 1).  With further variations within each of these chloropigments, nearly 100 
chlorophylls are known today.  In Fig. 2, we illustrate the atom numbering schemes for 
chlorophylls based on that introduced by International Union of Pure and Applied Chemistry 
(IUPAC) in 1979.  The five rings of chlorophylls and bacteriochlorophylls are lettered A－E, 
and the carbon atoms of the macrocycle are numbered clockwise, beginning with ring A.  In 
most cases, a magnesium ion is at the center of the molecule.

Among the various chlorophylls, chlorophyll a is found in all known eukaryotic, oxygenic 
photoautotrophs (Table 1), serving as the primary light-harvesting antenna pigment as well 
as a reaction center for capturing solar energy.  Currently, the only known exception to this 
rule is the cyanobacterium Acaryochloris marina, which produces chlorophyll d as its sole 
chloropigment (Miyashita et al. 1996).  In most marine microalgae, 0.25―5% of cellular 
carbon is associated with chlorophyll a (Geider 1987).

Chlorophyll b is the second-most important chlorophyll in terrestrial environments.  
Chlorophyll b differs from chlorophyll a only by one of the functional groups at the C―
8 position (a -CHO group in place of a CH3-group, Fig. 1).  In both chlorophylls a and b, 
a 20-carbon diterpenoid alcohol group (phytol) is esterified to the C―17 propionic acid 
attached to ring D. Higher plants and green algae contain chlorophyll a and chlorophyll b 
at a ratio of ~3: 1 (Table 1).  Chlorophyll b acts as an accessory pigment that participates 
directly in the light reactions of photosynthesis.

Chlorophyll c homologues (i.e., chlorophylls c1, c2, and c3) structurally differ from 
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Fig. 2.  The numbering scheme for chlorophyll a proposed by the International Union of Pure and 
Applied Chemistry (IUPAC). The same basic numbering scheme applies to all chlorophylls 
and bacteriochlorophylls.

Table 1　 Distribution of chlorophylls and bacteriochlorophylls in photoautotrophs (modified from 
Blankenship (2004))

Group
Chlorophyll Bacteriochlorophyll

a b c d a b c d e g

Cyanobacteria ＋ －
Green algae ＋ ＋
Diatoms ＋ ＋
Brown algae ＋ ＋
Dinoflagellate ＋ ＋
Cryptomonads ＋ ＋
Red algae ＋
Higher plants ＋ ＋

Purple bacteria ＋ ＋
Green sulfur bacteria － ＋ ＋ ＋
Green non-sulfur bacteria － ＋ ＋ ＋
Heliobacteria ＋

-Limited distribution
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of glutamic acid.
Once ALA is formed, two molecules of ALA condense to form porphobilinogen in 

a process catalyzed by ALA dehydratase (Fig. 3).  Four molecules of porphobilinogen 
are further condense to form tetrapyrrole uroporphyrinogen III (Fig. 3).  Overall, eight 
molecules of ALA are condensed to form the tetrapyrrole structure of chlorophylls.  
Uroporphyrinogen III then undergoes a series of decarboxylation and reduction reactions, 

of which are strictly anaerobic (Table 1).  Although they are termed “bacteriochlorophylls”, 
their ring B contains a C―7-C―8 double bond as in chlorophylls; thus, these pigments 
are actually chlorins rather than bacteriochlorins (Fig. 1).  Bacteriochlorophylls c and 
e have a methyl substituent at the C―20 methine bridge carbon (Glaeser et al. 2002).  
Bacteriochlorophyll g has a bacteriochlorin nucleus and is produced only by strictly 
anaerobic heliobacteria (Brockmann and Lipinski 1983).

Biosynthesis of tetrapyrroles in the cell

It is essential to comprehend the biosynthetic processes of chlorophylls in the cell for 
proper understanding of intramolecular isotopic signatures.  The biosynthetic pathways of 
chlorophylls together with the bifurcation points for the syntheses of other tetrapyrroles 
including hemes, bilins, and corrins are outlined in Fig. 3.  The biosynthetic processes of 
these tetrapyrrole structures in the cell have been intensively studied for more than 60 years.  
It has been demonstrated that 5-aminolevulinic acid or δ-aminolevulinic acid (ALA, Fig. 3) 
is a universal precursor in the biosynthesis of all tetrapyrrole compounds produced in the 
cell (e.g., Kikuchi et al. 1958; Beale 1993; Porra 1997).

There are two distinct mechanisms of ALA formation (Fig. 3).  In mammals, yeasts, and 
fungi, ALA is formed from glycine and succinyl-CoA in a one-step condensation reaction 
catalyzed by the enzyme ALA synthase (ALAS).  Because of the pioneering studies of 
David Shemin, who ingested 15N-labeled glycine to determine the half-life of hemoglobin 
(Shemin and Rittenberg 1946), this pathway is often called the “Shemin pathway”.  In 
contrast, in plants, algae, and most bacteria, ALA is synthesized from L-glutamic acid in 
multi-enzyme-catalyzed reactions (Fig. 3; e.g., Beale et al. 1975; Meller et al. 1975; Beale 
1995).  Glutamic acid is activated to glutamyl-tRNA in the first step, is then reduced to 
glutamate―1-semialdehyde (GSA), and subsequently forms ALA by GSA aminotransferase.  
This unique pathway is traditionally referred to as the “C5 pathway”.  However, it has been 
demonstrated that in some photosynthetic organisms including the α subgroup of purple 
bacteria and Euglena, ALA is produced through the Shemin pathway (Beale et al. 1981; Iida 
et al. 2002).  Biosynthesis of ALA is known to be a rate-limiting step in the biosynthesis of 
tetrapyrroles.  The activities of ALAS and GSA aminotransferase are strictly regulated by 
feedback inhibition.

In the Shemin pathway, the carbon skeleton of ALA is inherited from both succinyl-CoA 
and glycine; carbon atoms at the C―1 to C―4 positions of ALA derive from the C―1 to C―4 
carbons of succinyl-CoA, whereas the C―5 position of ALA is derived from the C―2 position 
of glycine (Fig. 3).  In contrast, the carbon skeleton of ALA produced through the C5 
pathway is inherited only from glutamic acid.  In this case, the carbons at positions C―1 to 
C―5 of ALA derive from the C―5 to C―1 positions of glutamic acid.  In the final reaction of 
the C5 pathway, GSA is the only required substrate and ALA is the only product.  Therefore, 
the stable carbon isotopic compositions at each of the positions in ALA should reflect those 
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synthase as part of the GS-GOGAT cycle (Coruzzi and Last 2000).  In unusually nitrogen-
enriched environments (＞100 mM NH3), glutamic acid is also synthesized directly from 
2-oxoglutarate by incorporation of ammonium by the enzyme glutamate dehydrogenase.  In 
both cases, the carbon skeleton of glutamic acid is inherited from 2-oxoglutarate.

The carbon atoms at the C―4 and C―5 positions in glutamic acid originate from the 

which are followed by insertion of the metal ion (i.e., Mg2＋, Fe2＋, or Zn2＋) into the 
tetrapyrrole ring to form protoporphyrin IX (Fig. 3).  The biosynthetic pathway of Fe-
chelated heme branches at this point.  In chlorophyll synthesis, metallation is followed by 
construction of the isocyclic ring E, reduction of ring D, and attachment of the phytyl (or 
farnesyl) side chain (Fig. 1).

The same basic pathway is followed for synthesis of all types of chlorophylls and 
bacteriochlorophylls.  The biosynthetic processes of the various chlorophylls branch in 
the final stages of chlorophyll formation.  For example, chlorophyll b is synthesized by 
oxidation of the methyl group at the C―7 position to give a formyl group.

In the bacteriochlorophyll a synthesis, the vinyl group at the C―3 position is converted to 
an acetyl group in the final step.  However, this process does not cleave the carbon skeleton; 
thus, the carbon isotopic composition of bacteriochlorophyllide a is the same as that of the 
immediate precursor.  In the synthesis of the bacteriochlorophyll e homologues, additional 
carbon atoms are added to the C―82 and C―20 positions in the final steps (Senge and Smith 
1995).  It has been demonstrated that these extra carbon atoms in the bacteriochlorophylls 
e are derived from the methyl group of S-adenosylmethionine, a metabolic product of 
methionine.

Intramolecular carbon isotopic compositions of chlorophylls

The biosynthetic pathways of chlorophyll synthesis described above indicate that the five 
carbon atoms in glutamic acid are not equally incorporated into the chlorophyll nucleus.  
For a chlorophyll a nucleus (i.e., chlorophyllide a), eight carbon atoms from positions C
―1 through C―4 in glutamic acid are introduced, whereas only two carbon atoms from the 
C―5 position of glutamic acid are incorporated (Fig. 4).  We should note that the methoxy 
group carbon (-OCH3) at the C―132 position originates from a methyl group (me) derived 
from the S-adenosylmethionine pool.  Overall, in a mechanistic sense, the carbon isotopic 
composition of the chlorophyll a nucleus (chlide a) can be expressed by the following 
equation (Ohkouchi et al. 2008):

13δchlide a＝(813δC―1＋813δC―2＋813δC―3＋813δC―4＋213δC―5＋13δme)/35 (1)

Although the methyl group derived from the S-adenosylmethionine pool may be somewhat 
depleted in 13C (Weilacher et al. 1996), it should not significantly affect the overall isotopic 
composition, because this carbon contributes only 2.8% (1/35) to the chlorophyll a nucleus.  
In all of the chlorophylls and bacteriochlorophylls, eight carbon atoms from positions C―1 
through C―4 in glutamic acid are introduced, whereas only one or two carbons from the C―5 
position in glutamic acid are incorporated.

In the plastids of photoautotrophic cells, L-glutamic acid is produced by transfer of the 
amide group of L-glutamine to 2-oxoglutarate, an important metabolite in the citric acid 
cycle (i.e., tricarboxylic acid cycle or TCA cycle), catalyzed by the enzyme glutamate 
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chlorophyll derivatives have been widely observed in the water column and sediments.  
They include pheophytins which lack the magnesium ion in the center of the tetrapyrrole 
nucleus of chlorophylls (Fig. 5).  Furthermore, pyropheophytins and pyropheophorbides 
have been reported in many sediments (Fig. 5, e.g., Villanueva et al. 1994; Harris et al. 

methyl and carboxyl groups of acetyl-CoA, respectively.  In the citric acid cycle, acetyl-CoA 
condenses with the four-carbon compound oxaloacetate to form citric acid (Fig. 4; Hayes 
2001). 2-Oxoglutarate is formed from citrate by decarboxylation, which does not involve 
the carbons that originated from acetyl-CoA introduced immediately prior to this step (Fig. 
4).  Previous studies have indicated that the carboxyl group of acetyl-CoA is substantially 
depleted in 13C relative to the methyl group due to isotopic fractionation associated with 
oxidation of pyruvate to acetyl-CoA by the pyruvate dehydrogenase complex (O’Leary 
1976; DeNiro and Epstein 1977; Monson and Hayes 1982; Hayes 1993).

The relatively small contribution of the carbon at the C―5 position in glutamic acid to 
the chlorophyll nucleus could result in its isotopic composition being somewhat enriched 
in 13C relative to the mean isotopic composition of glutamic acid.  Because the isotopic 
fractionation associated with oxidation of pyruvate to acetyl-CoA is purely a kinetic process, 
the magnitude of the 13C depletion in the carboxyl carbon may vary widely (Monson and 
Hayes 1982; Melzer and Schmidt 1987).  In case of a 10‰ 13C-depletion of the carboxyl 
group relative to the methyl group of acetyl-CoA, the chlorophyll nucleus can be calculated 
to be ~0.6‰ enriched in 13C relative to glutamic acid (or ALA).

In the citric acid cycle of photoautotrophic cells, not only acetyl-CoA but also 
oxaloacetate derived from irreversible β-carboxylation of phosphoenolpyruvate (PEP) 
substantially compensate for the metabolites removed from the citric acid cycle (Fig. 4; 
Sakata et al. 1997).  In β-carboxylation of PEP, a bicarbonate carbon (HCO3

－) binds to 
the C―4 position of oxaloacetate (corresponding to the C―1 position of 2-oxoglutarate).  
Typically, HCO3

－ is enriched relative to CO2 dissolved in seawater by ~10.5‰ at 10°
C and ~13.3‰ at 25°C at equilibrium (Mook et al. 1974).  Therefore, the carbon isotopic 
composition of the C―1 position of glutamic acid (i.e., the carboxyl group carbon) 
should be significantly enriched in 13C if β-carboxylation is an important process in the 
photoautotrophic cell.

In their seminal paper, Abelson and Hoering (1961) reported for the first time the isotopic 
composition of the C―1 carbon in glutamic acid in photosynthetic microorganisms cultured 
in the laboratory.  They found strong enrichment in 13C (＋10.9 to ＋32.2‰), which was 
highly variable relative to the mean isotopic composition of the other carbon atoms in 
glutamic acid (i.e., C―2 through C―5), although their experiments were less precise and 
based on less carefully cultured organisms than current methods.  The above theoretical 
considerations and experimental observations suggest that the isotopic composition of the 
methine bridge carbons (i.e., at the C―5, C―10, C―15, and C―20 positions in the tetrapyrrole) 
are enriched in 13C relative to the mean carbon isotopic composition of the entire chlorophyll 
nucleus, because they originate from the C―1 carbon in glutamic acid.

Geoporphyrins, geological derivatives of chlorophylls

Because chlorophylls are degraded either chemically or microbiologically, various 
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ETIO porphyrins originated from chlorophylls and hemes, respectively.  Since then, the 
nomenclature, chemistry, synthesis, and distribution of geoporphyrins in nature have 
been summarized by several authors (Baker and Palmer 1978; Baker and Louda 1986; 
Callot and Ocampo 2000; Keely 2006).  The purpose of this section is not to thoroughly 
review geoporphyrins but, rather, to give the readers some insight into the structure and 
nomenclature of geoporphyrins.

Since the Treibs hypothesis was proposed more than 70 years ago, over 70 species of 
geoporphyrins have been reported in various sediments, oils, and coals (Callot and Ocampo 
2000).  Sedimentary porphyrins occur mainly as VO(II) and Ni(II) complexes, although 
other metal complexes such as Cu(II) and Fe(III) have been frequently observed (Eckardt et 
al. 1989).

The structural variation in sedimentary porphyrins is far greater than in the original 
chlorophylls and hemes.  In most geological samples, DPEP is most abundant (Baker et 
al. 1968).  Because its exocyclic ring structure is closely related to the chlorophylls, it is 
generally accepted that DPEP must derive primarily from chlorophylls.  Theoretically, all 
chlorophylls a-d and even bacteriochlorophyll a are potential precursors of sedimentary 
DPEP. However, it is likely that chlorophyll a is the dominant precursor, because it is 
far more abundant and widespread relative to other chlorophylls in the natural aquatic 
environment.  In contrast, 17-nor-DPEP, a DPEP-type porphyrin lacking an alkyl chain 
at the C―17 position (Fig. 6), was postulated to be a derivative of chlorophyll c, because 
cleavage of the vinyl group at the C―17 position tends to occur after decarboxylation of 
the free acrylic chain (Callot et al. 1990). 17-nor-DPEP is widely distributed in geological 
samples (e.g., Huseby et al. 1996).

Isotopic composition of methine bridge carbon as an indicator of β-carboxylation

The above theoretical considerations suggest that the methine-bridge carbons in 
chlorophylls should be enriched in 13C relative to the other carbons in proportion to the 
β-carboxylase activity in the photoautotrophic cell.  In other words, the isotopomeric (i.e., 
intramolecular or site-specific isotopic composition) information on these porphyrins 
potentially provides physiological information on photoautotrophs in the geological past.

In the present study, we conducted chemical degradation of tetrapyrroles with chromium 
oxide (Quirke et al. 1980; Grice et al. 1996; Chikaraishi et al. 2008) to investigate their 
intramolecular isotopic compositions.  Chromic acid oxidation of porphyrins produces 
several types of maleimides (1H-pyrrole―2,5-diones) as well as carbon dioxide from the 
methine bridge carbons (Fig. 7; Chikaraishi et al. 2008).  Therefore, the mean isotopic 
compositions of the four methine bridge carbons of the porphyrins can be estimated using 
the following mass balance equation, including the isotopic compositions of the bulk 
tetrapyrroles and the maleimides, the oxidation products of the tetrapyrroles:

1995; Nakajima et al. 2003).  These “biological tetrapyrroles” are ultimately transformed to 
geoporphyrins, metallo-porphyrins substituted with various alkyl chains (Baker and Louda 
1986; Eckardt et al. 1989; Keely et al. 1990; Kashiyama et al. 2010).

Geoporphyrins are “geological derivatives” of cellular tetrapyrroles including 
chlorophylls and hemes, and are sometimes termed either sedimentary porphyrins or 
petroporphyrins.  Their origins were first postulated in the 1930s by Alfred Treibs from 
Hans Fischer’s Munich school, who isolated deoxophylloerythroetioporphyrin (DPEP) 
and etioporphyrin (ETIO; Fig. 6) from a wide range of petroleum, shales, bitumens, and 
coal.  Based on structural similarities, Treibs (1934, 1936) suggested that the DPEP and 
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molecular ion monitoring by single-stage quadrupole mass spectrometry, and single-crystal 
X-ray diffraction patterns (Kashiyama et al. 2007b, 2008a).  Carbon isotopic compositions 
of individual bulk porphyrins were determined using an elemental analyzer/isotope ratio 
mass spectrometry (EA/IRMS) with improved sensitivity (Ohkouchi et al. 2005; Ogawa et 
al. 2010).  We have previously reported the detailed carbon isotopic compositions of VO-
DPEP and VO―17-nor-DPEP for these samples in Kashiyama et al. (2008b) and they are 
also shown in Table 2.

We conducted chromic acid oxidation on aliquots of these purified porphyrins to form 
maleimides.  The structural assignments of the maleimides produced by chromic acid 
oxidation were achieved by gas chromatography/mass spectrometry and comparison 
with synthetic maleimide standards (GC/MS; Chikaraishi et al. 2008).  Carbon isotopic 
compositions of individual maleimides were determined using gas chromatography/
combustion/isotope ratio mass spectrometry (GC/C/IRMS; Chikaraishi et al. 2008).

After chemical degradation of VO-DPEP, we observed 2-ethyl―3-methyl maleimide, a 
degradation product of rings A, B, and D of the tetrapyrrole structure (Fig. 7).  In contrast, 
chromic acid degradation of VO―17-nor-DPEP produced both 2-ethyl―3-methyl maleimide 
and 2-methyl maleimide; the former is a product of rings A and B, and the latter is a product 
of ring D of the tetrapyrrole structure (Fig. 7).  The measured carbon isotopic composition 
of 2-ethyl―3-methyl maleimide from VO-DPEP was ―16.4‰ for sample BA138a and ―
17.1‰ for sample BA138b.  Furthermore, those of 2-ethyl―3-methyl maleimide and 
2-methyl maleimide from VO―17-nor-DPEP were ―16.4‰ and ―15.7‰, respectively, for 
sample BA138a.  We were not able to conduct maleimide analysis for VO―17-nor-DPEP 
from BA138b due to insufficient sample.

Using equation 2 above, we estimated the mean isotopic composition of the methine 
bridge carbons for these porphyrins.  As shown in Table 2, the mean isotopic composition of 
the methine bridge carbons was ―22.0‰ for VO-DPEP and ―22.3‰ for VO―17-nor-DPEP 
from BA138a, whereas that of VO-DPEP from BA138b was ―23.5‰.  The uncertainty 
of these estimated isotopic numbers derives not only from instrumental analytical errors 
(normally ~0.3‰ (1σ) for EA/IRMS and ~0.5‰ (1σ) for GC/C/IRMS), but also from 

13δmethine＝(3213δporphyrin－2813δmaleimide)/4
＝813δporphyrin－713δmaleimide (2)

We evaluated whether isotopic fractionation is associated with chromic acid oxidation 
in the laboratory experiments.  However, we did not observe variations in the estimated 
mean isotopic compositions of the methine bridge carbons with the maleimide yield of the 
chromic acid oxidation experiments.  Although a more rigorous evaluation is required in 
the future, based on this evidence, we tentatively concluded that the isotopic fractionation 
associated with C-C bond cleavage during chromium oxide degradation of tetrapyrrole 
structures can be neglected.

We applied the above approach to sedimentary porphyrins isolated from the Onnagawa 
Formation, which was formed in the middle Miocene in a semi-enclosed basin and is 
distributed in northeast Japan.  The Onnagawa Formation mainly consists of diatomaceous 
deposits with a total organic carbon content of up to 5% by weight; detailed lithology 
and stratigraphy are described in Tada (1991).  From our rock collection, we selected two 
samples (BA138a and BA138b) for this study (Kashiyama et al. 2008b).

Detailed analytical procedures are described in Kashiyama et al. (2007a) and Chikaraishi 
et al. (2008).  Briefly, the sediments were Soxhlet-extracted with chloroform/methanol 
(70: 30, v/v).  The total extracts were separated with silica gel column chromatography to 
isolate vanadyl (VO)-porphyrins.  Using a two-step HPLC method, we carefully isolated 
and purified VO-DPEP and VO―17-nor-DPEP from the VO-porphyrins using a computer-
controlled fraction collector.  Structural assignments for these purified porphyrins were 
achieved using a combination of absorption spectrometry with a photodiode array detector, 
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Table 2　 Carbon isotopic compositions (‰) of bulk porphyrins from two sediment samples from 
Onnagawa Formation and maleimides produced by their chromic acid oxidation. Estimated 
carbon isotopic compositions of methine bridge carbon are also shown in the bottom of the 
table.

BA138a BA138b

VO DPEP VO 17-nor-DPEP VO DPEP

Porphyrin －17.1 －16.7 －17.9

2-Eethyl―3-methyl-maleimide －16.4 －16.4 －17.1

2-Methyl-maleimide n.d. －15.7 n.d.

Methine bridge carbon －22.0 －22.3 －23.5
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isotopic compositions due to our current lack of information.  In the authors’ view, it 
is required to rigorously evaluate and understand the relationships between metabolic 
processes and isotopic fingerprinting, that will undoubtedly bring a bright future to the study 
of isotopomers of organic molecules.
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