# R/V Mirai Cruise Report MR06-05 (Leg 2)

November 28 – December 13, 2006 MISMO cruise In collaboration with Tropical Ocean Climate Study

> Edited by Yoshifumi Kuroda Hideaki Hase

Japan Agency for Marine-Earth Science and Technology (JAMSTEC)



# Contents

- 1. Cruise name and code
- 2. Introduction and observation summary
- 2.1 Introduction
- 2.2 Overview
- 2.3 Observation summary
- 3. Period, port of call, cruise log and cruise track
- 3.1 Period
- 3.2 Ports of call
- 3.3 Cruise log
- 3.4 Cruise track
- 4. Chief scientist
- 5. Participants list
- 5.1 On board scientists, engineers, technical staffs and observers
- 5.2 R/V MIRAI crewmember
- 6. General observation
- 6.1 Meteorology and atmospheric observation
- 6.1.1 Surface meteorological observation
- 6.1.2 Ceilometer
- 6.2 CTD/XCTD observations
- 6.2.1 CTD
- 6.2.2 XCTD
- 6.3 Validation of CTD cast data
- 6.3.1 Salinity measurement of sampled seawater
- 6.4 Continuous monitoring of surface seawater
- 6.5 Shipboard ADCP
- 6.6 Underway geophysics
- 6.6.1 Sea surface gravity
- 6.6.2 Sea surface three-component magnetic field
- 6.6.3 Swath bathymetry
- 6.7 Satellite image acquisition
- 6.7.1 NOAA HRPT
- 7. Special observations
- 7.1 TRITON moorings
- 7.1.1 TRITON mooring operation
- 7.1.2 Inter-comparison between shipboard CTD and TRITON data
- 7.2 ADCP subsurface mooring
- 7.3 Shallow Water CTD and Fluorescence Observation
- 7.4 ARGO profiling float deployment
- 7.5 Doppler radar and radio sonde observation
  - 7.5.1 Doppler radar observation
  - 7.5.2 Radio sonde observation
- 7.6 Lidar observations of clouds and aerosols
- 7.7 Rain and water vapor sampling for stable isotope measurement
- 7.8 Aerosol optical characteristics measured by ship-borne sky radiometer
- 7.9 The production-consumption mechanisms and sea-air flux of greenhouse gases
- 7.10 Infrared radiometer
- 7.11 GPS meteorology

# 1. Cruise name and code

Tropical Ocean Climate Study MR06-05 (Leg 2) Ship: R/V MIRAI Captain: Masaharu Akamine

#### 2. Introduction and observation summary

#### **2.1. Introduction**

The Madden-Julian oscillation (MJO), that is a dominant eastward propagating intraseasonal oscillation in the Tropics, is a key issue to be solved, as it influences not only the tropical atmospheric and oceanic variations but also the global climate. Since the MJO is a phenomenon coupled with deep cumulus convections, it is manifested over the warm pool region from the eastern Indian Ocean through the western Pacific Ocean. However, past major field experiments conducted in the Indian Ocean were devoted to study the summer monsoon, and there are few data especially in the boreal fall-winter season.

On the one hand, recent studies using reanalysis and satellite data revealed various aspects of the large-scale MJO structure. However, current general circulation models still fail to simulate the "slow" eastward propagation and underestimate the strength of the intraseasonal variability. It is believed that this deficiency is mainly due to the insufficient cumulus parameterization. Therefore, it requires that fine-scale observation data is invaluable to promote our knowledge on the mechanism of the MJO.

Based on the fact mentioned above, we at JAMSTEC have planned to conduct the intensive observation using the R/V Mirai to capture the detailed features from the ocean surface to the entire troposphere in the period from late October through November when the onset of convection in the MJO is often observed. We have named this project as MISMO (<u>Mirai Indian Ocean cruise for the Study of the MJO-convection Onset</u>).

During the Leg-2 of MISMO cruise, surface meteorological measurement, atmospheric sounding by radiosonde, CTD casting, and ADCP current measurement as well as Doppler radar observation were carried out as a main mission. In addition, deployment of TRITON/m-TRITON buoys, turbulent flux measurement, Mie-scattering LIDAR, vertical-pointing cloud radar, and other many observations were conducted.

We would like to introduce the web site for MISMO project. On the web site at "http://www.jamstec.go.jp/iorgc/mismo/", details on not only the Mirai cruise but also the relevant observations conducted as part of the MISMO project can be found.

#### 2.2. Overview

**2.2.1. Ship** R/V MIRAI Captain Masaharu Akamine

**2.2.2. Cruise code** MR06-05 Leg 2

#### 2.2.3. Project name

Tropical Ocean Climate Study

#### 2.2.4. Undertaking institution

Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2-15, Natsushima-cho, Yokosuka 237-0061, Japan

#### 2.2.5. Chief Scientist

Yoshifumi Kuroda (JAMSTEC)

#### 2.2.6. Period

November 28th, 2006 (Male, Maldives) - December 13th, 2006 (Singapore)

#### 2.2.7. Research Participants

Total 29 scientists and technical staffs participated from 6 different institutions and companies.

| 2.3. Observation summary                                |                     |
|---------------------------------------------------------|---------------------|
| TRITON buoy deployment:                                 | 2 sites             |
| TRITON buoy recovery:                                   | 2 sites             |
| m-TRITON buoy deployment:                               | 1 site              |
| ADCP buoy deployment:                                   | 1 site              |
| ADCP buoy recovery                                      | 3 sites             |
| CTD including water sampling:                           | 7 casts             |
| XCTD:                                                   | 2 launches          |
| Radio sonde:                                            | 52 launches         |
| Surface meteorology:                                    | continuous          |
| Shipboard ADCP measurement:                             | continuous          |
| Surface temperature and salinity measurements by intake | e method continuous |

\*\*\* Other specially designed observations have been carried out.

#### 2.4 Observed oceanic and atmospheric conditions

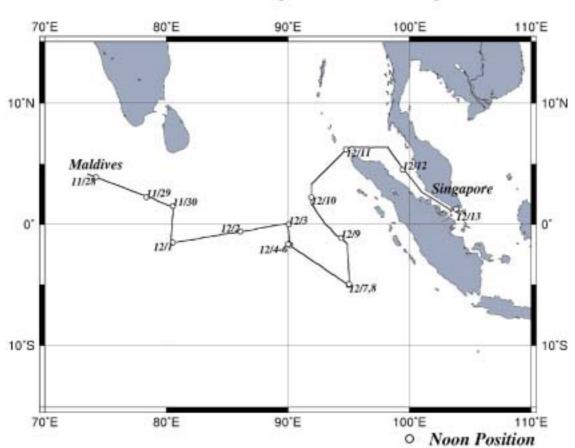
A zonal Dipole Mode phenomenon in the tropical Indian Ocean has developed since the end of July 2006 and was in the mature phase in November 2006. Associated with this event, easterly winds prevailed until mid November. The data from two m-TRITON buoys (0,79E and 0,82E) in the MISMO mooring array indicated that the thermocline was shallower than climatology, and it deepened toward west reversed to the climatology. It may indicate warm water migration from east to west. The temperature in the surface layer was warmer than climatology. The shipboard ADCP data during Leg 1 indicated that the westward currents dominated in the surface layer, but reversed eastward currents intensified subsurface layer. In mid November, a MJO system reached to the MISMO region, then the easterly winds was weakened and convective clouds developed. During Leg 2, westerly winds observed, and the convective system moved also eastward as R/V Mirai moved. On the ship, the cloud convective system highly developed on December 4. When the ship steamed from 1.5S90E to 5S95E, we observed strong boreal winter monsoon winds about 15m/s. Then, the convective system seemed to be calmed down, and it was calm weather continued since December 8<sup>th</sup>. The ship board ADCP data during Leg 2 indicated that the eastward currents were well developed along the equator without strong westerly winds along the equator. Thus, we infer that the east ward currents was induced by ocean interior dynamics rather than surface winds forcing. At the 5S, 95E TRITON buoy site, the sea surface temperature was lower than climatology, and it may be due to that the cooled pole of Dipole Mode well developed and there was large excursion of upwelling water from Sumatra coast. The eastward currents along the equator may contribute some part to the termination of this Dipole Mode event.

Thus, during Leg 1, we observed from the preconditioning stage to the onset of one MJO under the mature phase of the Dipole Mode event. During Leg 2, we observed from developing stage to termination stage of the MJO. The obtained data shall enable us to analyze the ocean and atmosphere changes associated with the MJO and Dipole Mode event, and its hidden interaction processes between them.

# **3.** Period, port of call, cruise log and cruise track **3.1.** Period

November 28 - December 13, 2006

# 3.2. Ports of call


| Male, Maldives | (Departure; November 28, 2006) |
|----------------|--------------------------------|
| Singapore      | (Arrival; December 13, 2006)   |

# 3.3. Cruise log

| SMT              | UTC         | Event                                                                                           |
|------------------|-------------|-------------------------------------------------------------------------------------------------|
| (Ship Mean Time) |             |                                                                                                 |
| Nov. 28 (Tue.)   |             |                                                                                                 |
| 08:40            | 03:40       | Departure from Male, Maldives (SMT = UTC + 5.0)<br>Start Leg-2 of MR06-05 cruise                |
| 10:00            | 05:00       | Safety guidance for participants                                                                |
| 10:28            | 05:28       | Meeting for observation                                                                         |
| 13:15            | 08:15       | Boat drill                                                                                      |
| 16:45            | 11:45       | Konpira-san ceremony                                                                            |
|                  |             |                                                                                                 |
| Nov. 29 (Wed.)   | •• • • •    | ~                                                                                               |
| 04:00            | 23:00       | Starting of continuous monitoring of surface<br>sea water, and shipboard observations including |
|                  |             | Doppler radar (because of no permission for                                                     |
|                  |             | observation into Maldives EEZ)                                                                  |
| 05:00            | 00:00       | Radio sonde launch R01 (2.7689 N, 77.2023 E)                                                    |
| 11:00            | 06:00       | R02 (2.3553 N, 78.3355 E)                                                                       |
| 17:00            | 12:00       | R03 (2.1126 N, 78.9847 E)                                                                       |
| 23:00            | 18:00       | R04 (1.8082 N, 79.6186 E)                                                                       |
|                  |             | Cruise to (1.5 N, 80.5 E)                                                                       |
| Nov. 30 (Thu.)   |             |                                                                                                 |
| 05:00            | 00:00       | R05 (1.5734 N, 80.2008 E)                                                                       |
| 07:26-10:12      | 02:26-05:12 | Recovery of ADCP mooring at 1.5N, 80.5E                                                         |
| 07.20 10.12      | 02.20 00.12 | (4543 m, 01-30.0 N, 080-23.8 E)                                                                 |
| 10:56-14:09      | 05:56-09:09 | CTD C01 (4536 m, 01-32.39 N, 080-31.80 E)                                                       |
| 11:00            | 06:00       | R06 (1.4763 N, 80.3915 E)                                                                       |
| 17:00            | 12:00       | R07 (1.2649 N, 80.5428 E)                                                                       |
| 23:00            | 18:00       | R08 (0.0603 N, 80.4398 E)                                                                       |
| Dec. 01 (Fri.)   |             |                                                                                                 |
| 05:00            | 00:00       | R09 (1.1390 S, 80.3697 E)                                                                       |
| 07:25-10:28      | 02:25-05:28 | Recovery of ADCP mooring at 1.5S, 80.5E                                                         |
|                  |             | (4867 m, 01-30.0 S, 080-20.7 E)                                                                 |
| 11:00            | 06:00       | R10 (1.4924 S, 80.3487 E)                                                                       |
| 11:26-13:12      | 06:26-08:12 | CTD C02 (4840 m, 01-30.08 S, 080-31.26 E)                                                       |
| 17:00            | 12:00       | R11 (1.4021 S, 81.2029 E)                                                                       |
| 22:00            | 16:00       | Adjust SMT to UTC + 6.0                                                                         |
| Dec. 02 (Sat.)   |             |                                                                                                 |
| 00:00            | 18:00       | R12 (1.1618 S, 82.7742 E)                                                                       |
| 06:00            | 00:00       | R13 (0.8819 S, 84.3633 E)                                                                       |
|                  |             | ( 5,                                                                                            |

| 07:59-08:06                                                                                           | 01:59-02:06                                                       | Sampling of sea surface water<br>(00-45.49 S, 085-04.52 E)                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12:00                                                                                                 | 06:00                                                             | (00 45.47 S, 005 04.52 E)<br>R14 (0.6589 S, 85.8589 E)                                                                                                                                                        |
| 15:57-16:02                                                                                           | 09:57-10:02                                                       | Sampling of sea surface water                                                                                                                                                                                 |
| 10.07 10.02                                                                                           | 09.07 10.02                                                       | (00-27.02 S, 087-07.09 E)                                                                                                                                                                                     |
| 18:00                                                                                                 | 12:00                                                             | R15 (0.3958 S, 87.3532 E)                                                                                                                                                                                     |
| 10100                                                                                                 | 12100                                                             | Cruise to (0 N, 90 E)                                                                                                                                                                                         |
|                                                                                                       |                                                                   |                                                                                                                                                                                                               |
| Dec. 03 (Sun.)                                                                                        |                                                                   |                                                                                                                                                                                                               |
| 00:00                                                                                                 | 18:00                                                             | R16 (0.1571 S, 88.5857 E)                                                                                                                                                                                     |
| 06:00                                                                                                 | 00:00                                                             | R17 (0.0253 N, 89.7314 E)                                                                                                                                                                                     |
| 06:30                                                                                                 | 00:30                                                             | Confirmation of ATLAS buoy vandalism                                                                                                                                                                          |
|                                                                                                       |                                                                   | (take a photograph)                                                                                                                                                                                           |
| 07:31-10:24                                                                                           | 01:31-04:24                                                       | Recovery of ADCP mooring on equator at 90 E                                                                                                                                                                   |
| 11:04-13:07                                                                                           | 05:04-07:07                                                       | Deployment of ADCP mooring on equator at 90 E                                                                                                                                                                 |
|                                                                                                       |                                                                   | (4410 m, 00-00.37 N, 090-03.78 E)                                                                                                                                                                             |
| 12:00                                                                                                 | 06:00                                                             | R18 (0.0203 N, 90.0883 E)                                                                                                                                                                                     |
| 14:24-17:26                                                                                           | 08:24-11:26                                                       | CTD C03 (4403 m, 00-03.20 N, 089-55.30 E)                                                                                                                                                                     |
| 18:00                                                                                                 | 12:00                                                             | R19 (0.0513 N, 89.9256 E)                                                                                                                                                                                     |
|                                                                                                       |                                                                   |                                                                                                                                                                                                               |
| Dec. 04 (Mon.)                                                                                        |                                                                   |                                                                                                                                                                                                               |
| 00:00                                                                                                 | 18:00                                                             | R20 (0.8967 S, 90.0770 E)                                                                                                                                                                                     |
| 06:00                                                                                                 | 00:00                                                             | R21 (1.7315 S, 90.0454 E)                                                                                                                                                                                     |
| 07:45-11:26                                                                                           | 01:45-05:26                                                       | Deployment of m-TRITON at 1.5S, 90E                                                                                                                                                                           |
|                                                                                                       |                                                                   | (4714 m, 01-42.98 S, 090-08.78 E)                                                                                                                                                                             |
| 12:00                                                                                                 | 06:00                                                             | R22 (1.7170 S, 90.1427 E)                                                                                                                                                                                     |
| 12:56-13:35                                                                                           | 06:56-07:35                                                       | CTD C04 (4715 m, 01-41.33 S, 090-10.36 E)                                                                                                                                                                     |
| 18:00                                                                                                 | 12:00                                                             | R23 (1.6548 S, 90.0083 E)                                                                                                                                                                                     |
|                                                                                                       |                                                                   |                                                                                                                                                                                                               |
| Dec. 05 (Tue.)                                                                                        | 10.00                                                             |                                                                                                                                                                                                               |
| 00:00                                                                                                 | 18:00                                                             | R24 (1.6439 S, 90.0923 E)                                                                                                                                                                                     |
| 06:00                                                                                                 | 00:00                                                             | R25 (1.5971 S, 90.1162 E)                                                                                                                                                                                     |
| 08:15-11:01                                                                                           | 02:15-05:01                                                       | Deployment of TRITON at 1.5S, 90E                                                                                                                                                                             |
| 00.00                                                                                                 | 02.00                                                             | (4712 m, 01-35.63 S, 090-05.41 E)                                                                                                                                                                             |
| 09:00                                                                                                 | 03:00                                                             | R26 (1.5550 S, 90.1203 E)                                                                                                                                                                                     |
| 11:24                                                                                                 | 05:24                                                             | XCTD X001 (4702 m, 01-35.11 S, 090-06.03 E)                                                                                                                                                                   |
| 12:00                                                                                                 | 06:00                                                             | R27 (1.5861 S, 90.0911 E)                                                                                                                                                                                     |
| 12:56-16:01<br>15:00                                                                                  | 06:56-10:01<br>09:00                                              | CTD C05 (4694 m, 01-38.33 S, 090-00.46 E)<br>R28 (1.6433 S, 90.0111 E)                                                                                                                                        |
| 18:00                                                                                                 | 12:00                                                             | R29 (1.6425 S, 90.0281 E)                                                                                                                                                                                     |
| 21:00                                                                                                 |                                                                   | (1.0+25, 5, 50.0201 L)                                                                                                                                                                                        |
|                                                                                                       | 15.00                                                             | R30 (1 6599 S 90 0259 F)                                                                                                                                                                                      |
| 21.00                                                                                                 | 15:00                                                             | R30 (1.6599 S, 90.0259 E)                                                                                                                                                                                     |
|                                                                                                       | 15:00                                                             | R30 (1.6599 S, 90.0259 E)                                                                                                                                                                                     |
| Dec. 06 (Wed.)<br>00:00                                                                               |                                                                   |                                                                                                                                                                                                               |
| Dec. 06 (Wed.)                                                                                        | 15:00<br>18:00<br>21:00                                           | R30 (1.6599 S, 90.0259 E)<br>R31 (1.6896 S, 90.0075 E)<br>R32 (1.6909 S, 90.0082 E)                                                                                                                           |
| Dec. 06 (Wed.)<br>00:00                                                                               | 18:00                                                             | R31 (1.6896 S, 90.0075 E)                                                                                                                                                                                     |
| Dec. 06 (Wed.)<br>00:00<br>03:00                                                                      | 18:00<br>21:00                                                    | R31 (1.6896 S, 90.0075 E)<br>R32 (1.6909 S, 90.0082 E)                                                                                                                                                        |
| Dec. 06 (Wed.)<br>00:00<br>03:00<br>06:00                                                             | 18:00<br>21:00<br>00:00                                           | R31 (1.6896 S, 90.0075 E)<br>R32 (1.6909 S, 90.0082 E)<br>R33 (1.6692 S, 90.0106 E)                                                                                                                           |
| Dec. 06 (Wed.)<br>00:00<br>03:00<br>06:00<br>08:21-12:13                                              | 18:00<br>21:00<br>00:00<br>02:21-06:13                            | R31 (1.6896 S, 90.0075 E)<br>R32 (1.6909 S, 90.0082 E)<br>R33 (1.6692 S, 90.0106 E)<br>Recovery of TRITON at 1.5S, 90E                                                                                        |
| Dec. 06 (Wed.)<br>00:00<br>03:00<br>06:00<br>08:21-12:13<br>09:00                                     | 18:00<br>21:00<br>00:00<br>02:21-06:13<br>03:00                   | R31 (1.6896 S, 90.0075 E)<br>R32 (1.6909 S, 90.0082 E)<br>R33 (1.6692 S, 90.0106 E)<br>Recovery of TRITON at 1.5S, 90E<br>R34 (1.6537 S, 89.9896 E)                                                           |
| Dec. 06 (Wed.)<br>00:00<br>03:00<br>06:00<br>08:21-12:13<br>09:00<br>12:00<br>18:00                   | 18:00<br>21:00<br>00:00<br>02:21-06:13<br>03:00<br>06:00          | R31 (1.6896 S, 90.0075 E)<br>R32 (1.6909 S, 90.0082 E)<br>R33 (1.6692 S, 90.0106 E)<br>Recovery of TRITON at 1.5S, 90E<br>R34 (1.6537 S, 89.9896 E)<br>R35 (1.6532 S, 90.0006 E)                              |
| Dec. 06 (Wed.)<br>00:00<br>03:00<br>06:00<br>08:21-12:13<br>09:00<br>12:00<br>18:00<br>Dec. 07 (Thu.) | 18:00<br>21:00<br>00:00<br>02:21-06:13<br>03:00<br>06:00<br>12:00 | R31 (1.6896 S, 90.0075 E)<br>R32 (1.6909 S, 90.0082 E)<br>R33 (1.6692 S, 90.0106 E)<br>Recovery of TRITON at 1.5S, 90E<br>R34 (1.6537 S, 89.9896 E)<br>R35 (1.6532 S, 90.0006 E)<br>R36 (2.3699 S, 91.0605 E) |
| Dec. 06 (Wed.)<br>00:00<br>03:00<br>06:00<br>08:21-12:13<br>09:00<br>12:00<br>18:00                   | 18:00<br>21:00<br>00:00<br>02:21-06:13<br>03:00<br>06:00          | R31 (1.6896 S, 90.0075 E)<br>R32 (1.6909 S, 90.0082 E)<br>R33 (1.6692 S, 90.0106 E)<br>Recovery of TRITON at 1.5S, 90E<br>R34 (1.6537 S, 89.9896 E)<br>R35 (1.6532 S, 90.0006 E)                              |

| 10.20             | 04.20          | Commemorative Dhote et unnen deelt                             |
|-------------------|----------------|----------------------------------------------------------------|
| 10:30<br>12:00    | 04:30<br>06:00 | Commemorative Photo at upper deck<br>R39 (5.0165 S, 94.9506 E) |
| 12:00             | 07:09-09:54    | Deployment of TRITON at 5S, 95E                                |
| 15.07-15.54       | 07.07-07.54    | (5012 m, 05-01.56 S, 094-59.74 E)                              |
| 16:31             | 10:31          | XCTD X002 (5011 m, 05-01.17 S, 094-59.67 E)                    |
| 16:35-17:30       | 10:35-11:30    | CTD C06 (5007 m, 04-57.98 S, 094-59.25 E)                      |
| 18:00             | 12:00          | R40 (4.9664 S, 94.9886 E)                                      |
| 10.00             | 12.00          |                                                                |
| Dec. 08 (Fri.)    |                |                                                                |
| 00:00             | 18:00          | R41 (4.9703 S, 95.0218 E)                                      |
| 06:00             | 00:00          | R42 (4.9476 S, 95.0094 E)                                      |
| 08:19-12:29       | 02:19-06:29    | Recovery of TRITON at 5S, 95E                                  |
| 12:00             | 06:00          | R43 (4.9396 S, 95.0136 E)                                      |
| 12:55-16:04       | 06:55-10:04    | CTD C07 (5001 m, 04-56.20 S, 095-01.75 E)                      |
| 16:11             | 10:11          | Launch of ARGO float (04-56.55 S, 095-01.71 E)                 |
| 18:00             | 12:00          | R44 (4.7703 S, 95.0239 E)                                      |
| Dec. 09 (Sat.)    |                |                                                                |
| 00:00             | 18:00          | R45 (3.5281 S, 94.9713 E)                                      |
| 06:00             | 00:00          | R46 (2.2763 S, 94.9015 E)                                      |
| 12:00             | 06:00          | R47 (1.2478 S, 94.4875 E)                                      |
| 18:00             | 12:00          | R48 (0.5542 S, 93.6362 E)                                      |
| 22:00             | 15:00          | Adjust SMT to UTC $+ 7.0$                                      |
| 22.00             | 15.00          |                                                                |
| Dec. 10 (Sun.)    |                |                                                                |
| 01:00             | 18:00          | R49 (0.2354 N, 92.9164 E)                                      |
| 07:00             | 00:00          | R50 (1.1855 N, 92.2602 E)                                      |
| 13:00             | 06:00          | R51 (2.3275 N, 91.9164 E)                                      |
| 13:15             | 06:15          | Pirates station drill                                          |
| 19:00             | 12:00          | R52 (3.2849 N, 91.9159 E)                                      |
| 19:00             | 12:00          | Stop of continuous monitoring of surface sea water,            |
|                   |                | and shipboard observations (because of enter into              |
|                   |                | Indonesian and Tai land EEZs)                                  |
| 19:00             | 12:00          | Social gathering                                               |
| 22:00             | 14:00          | Adjust SMT to UTC + 8.0                                        |
| Dec. 11 (Mon.)    |                |                                                                |
| 13:00             | 05:00          | On-board seminar                                               |
| 10100             |                | Cruise to Singapore                                            |
|                   |                |                                                                |
| Dec. 12 (Tue.)    | <b>22</b> 00   |                                                                |
| 06:00             | 22:00          | Restart of continuous monitoring of surface sea water,         |
| 10.00             | 10.00          | and shipboard observations                                     |
| 18:00             | 10:00          | Finish of continuous monitoring of surface sea water,          |
|                   |                | and shipboard observations                                     |
|                   |                | Cruise to Singapore                                            |
| $D_{aa}$ 12 (W-1) |                |                                                                |
| Dec. 13 (Wed.)    | 05.00          | Aminal to Singanana                                            |
| 13:00             | 05:00          | Arrival to Singapore                                           |
|                   |                |                                                                |



# Cruise Track of MR06-05Leg2

# 4. Chief scientist

Yoshifumi Kuroda Group leader MARITEC, JAMSTEC 2-15, Natsushima, Yokosuka, Kanagawa 237-0061, JAPAN

# 5. Participants List5.1 On Board Scientists / Engineers / Technical Staffs / Observers

| Name                 | Affiliation                      | E-mail address              |
|----------------------|----------------------------------|-----------------------------|
| Kuroda, Yoshihumi    | Japan Agency for Marine-Earth    | kuroda@jamstec.go.jp        |
|                      | Science and Technology           |                             |
|                      | (JAMSTEC)                        |                             |
|                      | 2-15, Natsushima, Yokosuka,      |                             |
|                      | 237-0061 JAPAN                   |                             |
| Hase, Hideaki        | JAMSTEC                          | haseh@jamstec.go.jp         |
| Kinoshita, Hajime    | JAMSTEC                          | jimmy@jamstec.go.jp         |
| Shirooka, Ryuichi    | JAMSTEC                          | shiro@jamstec.go.jp         |
| Yamada, Hiroyuki     | JAMSTEC                          | yamada@jamstec.go.jp        |
| Seiki, Ayako         | JAMSTEC                          | aseiki@jamstec.go.jp        |
| Miyakawa, Tomoki     | JAMSTEC/Univ. of Tokyo           | miyakawa@ccsr.u-tokyo.ac.jp |
|                      | Center for Climate System        |                             |
|                      | Research (CCSR)                  |                             |
|                      | 5-1-5 Kashiwanoha, Kashiwa,      |                             |
|                      | Chiba 277-8568 JAPAN             |                             |
| Kurita, Naoyuki      | JAMSTEC                          | nkurita@jamstec.go.jp       |
| Horii, Takanori      | JAMSTEC                          | horiit@jamstec.go.jp        |
| Kinoshita, Yoshinori | Chiba University                 | kino@graduate.chiba-u.jp    |
|                      | 1-33, Yayoicho, Inage-ku, Chiba, |                             |
|                      | 263-8522 Japan                   |                             |
| Fujii, Ayako         | Tokyo Institute of Technology    | fujii.a.aa@m.titech.ac.jp   |
|                      | G1-923, 4259, Nagatsuda,         |                             |
|                      | Midori-ku, Yokohama, 226-8503    |                             |
|                      | JAPAN                            |                             |
| Kawano, Kohei        | Tokyo Institute of Technology    | kawano.k.ac@m.titech.ac.jp  |
| Narin, Boontanon     | Mahidol University               | ennbt@mahidol.ac.th         |
|                      | 999 Phuttamonthon 4 Road,        |                             |
|                      | Phuttamonthon, Salaya, Nakhon    |                             |
|                      | Pathom 73170, THAILAND           |                             |
| Sueyoshi, Soichiro   | Global Ocean Development Inc.    | sueyoshi@godi.co.jp         |
|                      | (GODI)                           |                             |
|                      | Kami-oooka-nishi 1-13-8,         |                             |
|                      |                                  |                             |

|                    | Kounan-ku, Yokohama 233-0002  |                      |  |
|--------------------|-------------------------------|----------------------|--|
|                    | JAPAN                         |                      |  |
| Nagahama, Norio    | GODI                          | nagahama@godi.co.jp  |  |
| Ohyama, Ryo        | GODI                          | ohyama@godi.co.jp    |  |
| Noguchi, Tomohide  | Marine Works Japan Ltd. (MWJ) | noguchit@mwj.co.jp   |  |
|                    | 2-16-32 5F, Kamariyahigashi,  |                      |  |
|                    | Kanazawa-ku, Yokohama,        |                      |  |
|                    | 236-0042 JAPAN                |                      |  |
| Matsumoto, Keisuke | MWJ                           | matsumotok@mwj.co.jp |  |
| Takao, Koichi      | MWJ                           | takao@mwj.co.jp      |  |
| Saito, Nobuyuki    | MWJ                           | saiton@mwj.co.jp     |  |
| Yamamoto, Hideki   | MWJ                           | hideki@mwj.co.jp     |  |
| Ozawa, Satoshi     | MWJ                           | satoshi@mwj.co.jp    |  |
| Idai, Toru         | MWJ                           | idai@mwj.co.jp       |  |
| Furuhata, Masaki   | MWJ                           | furuhata@mwj.co.jp   |  |
| Kamata, Minoru     | MWJ                           | kamata@mwj.co.jp     |  |
| Sonoyama, Yoichi   | MWJ                           | sonoyama@mwj.co.jp   |  |
| Murata, Akinori    | MWJ                           | murataa@mwj.co.jp    |  |
| Yamada, Masaki     | MWJ                           | masakiy@mwj.co.jp    |  |
| Hisazumi, Masatomo | MWJ                           | hisazumim@mwj.co.jp  |  |

# 5.2 M/V MIRAI crewmembers

| Master              | Akamine, Masaharu   |
|---------------------|---------------------|
| Chief Officer       | Kita, Yujiro        |
| 1st Officer         | Sasaki, Daisuke     |
| 2nd Officer         | Hikichi, Tomoo      |
| 3rd Officer         | Fukaura, Nobuo      |
| Chief Engineer      | Higashi, Koichi     |
| 1st Engineer        | Masuno, Koji        |
| 2nd Engineer        | Minami, Kaoru       |
| 3rd Engineer        | Tohken, Hiroyuki    |
| Chief Radio Officer | Sagawa, Kazuo       |
| Boatswain           | Omote, Kunihiko     |
| Able Seaman         | Yamauchi, Keiji     |
| Able Seaman         | Suzuki, Yukiharu    |
| Able Seaman         | Honzo, Toshiharu    |
| Able Seaman         | Matsumoto, Shozo    |
| Able Seaman         | Kuwahara, Yosuke    |
| Able Seaman         | Sato, Tsuyoshi      |
| Able Seaman         | Okada, Masashige    |
| Able Seaman         | Komata, Shuji       |
| Able Seaman         | Aisaka, Takeharu    |
| Able Seaman         | Yabugami, Atsuhiro  |
| No.1 Oiler          | Honda, Sadanori     |
| Oiler               | Kinoshita, Shigeaki |
| Oiler               | Sugimoto, Yoshihiro |
| Oiler               | Yamashita, Kazumi   |
| Oiler               | Tanaka, Toshimitsu  |
| Oiler               | Taniguchi, Daisuke  |
| Chief Steward       | Ota, Hitoshi        |
| Steward             | Hiraishi, Hatsuji   |
| Steward             | Sugimoto, Kitoshi   |
| Steward             | Hamabe, Tatsuya     |
| Steward             | Uemura, Tamotsu     |
| Steward             | Sasaki, Wataru      |
|                     |                     |

# 6.1 Meteorology and atmospheric observation

# 6.1.1 Surface meteorological observation

| (1) Personne |
|--------------|
|--------------|

| Kunio Yoneyama     | (JAMSTEC): | Principal Investigator (not onboard) |
|--------------------|------------|--------------------------------------|
| Souichiro Sueyoshi | (GODI)     |                                      |
| Norio Nagahama     | (GODI)     |                                      |
| Ryo Ohyama         | (GODI)     |                                      |

# (2) Objective

The surface meteorological parameters are observed as a basic dataset of the meteorology. These parameters bring us the information about temporal variation of the meteorological condition surrounding the ship.

# (3) Methods

The surface meteorological parameters were observed throughout MR06-05 Leg2 cruise. At this cruise, we used 2 systems for the surface meteorological observation.

- 1. Mirai surface meteorological observation system
- 2. Shipboard Oceanographic and Atmospheric Radiation (SOAR) system

# (3-1) Mirai surface meteorological observation system

Instruments of SMET are listed in Table 6.1.1-1 and measured parameters are listed in Table 6.1.1-2. Data was collected and processed by KOAC-7800 weather data processor made by Koshin Denki, Japan. The data set has 6-second averaged.

Table 6.1.1-1: Instruments and their installation locations of Mirai meteorological system

| Sensors                 | Туре         | Manufacturer             | Location (altitude from surface)                                                |
|-------------------------|--------------|--------------------------|---------------------------------------------------------------------------------|
| Anemometer              | KE-500       | Koshin Denki, Japan      | foremast (24m)                                                                  |
| Thermometer             | HMP45A       | Vaisala, Finland         | compass deck (21m)                                                              |
|                         | with 43408 0 | Gill aspirated radiation | n shield (R.M. Young)                                                           |
|                         | RFN1-0       | Koshin Denki, Japan      | $4^{\text{th}} \text{ deck}(-1\text{m}, \text{ inlet } -5\text{m}) \text{ SST}$ |
| Barometer               | Model-370    | Setra System, USA        | weather observation room                                                        |
|                         |              |                          | captain deck (13m)                                                              |
| Rain gauge              | 50202        | R. M. Young, USA         | compass deck (19m)                                                              |
| Optical rain gauge      | ORG-815DR    | Osi, USA                 | compass deck (19m)                                                              |
| Radiometer (short wave) | MS-801       | Eiko Seiki, Japan        | radar mast (28m)                                                                |
| Radiometer (long wave)  | MS-202       | Eiko Seiki, Japan        | radar mast (28m)                                                                |
| Wave height meter       | MW-2         | Tsurumi-seiki, Japan     | bow (10m)                                                                       |

|    | Parmeter                              | Units   | Remarks                       |
|----|---------------------------------------|---------|-------------------------------|
| 1  | Latitude                              | degree  |                               |
| 2  | Longitude                             | degree  |                               |
| 3  | Ship's speed                          | knot    | Mirai log, DS-30 Furuno       |
| 4  | Ship's heading                        | degree  | Mirai gyro, TG-6000, Tokimec  |
| 5  | Relative wind speed                   | m/s     | 6sec./10min. averaged         |
| 6  | Relative wind direction               | degree  | 6sec./10min. averaged         |
| 7  | True wind speed                       | m/s     | 6sec./10min. averaged         |
| 8  | True wind direction                   | degree  | 6sec./10min. averaged         |
| 9  | Barometric pressure                   | hPa     | adjusted to sea surface level |
|    |                                       |         | 6sec. averaged                |
| 10 | Air temperature (starboard side)      | degC    | 6sec. averaged                |
| 11 | Air temperature (port side)           | degC    | 6sec. averaged                |
| 12 | Dewpoint temperature (starboard side) | degC    | 6sec. averaged                |
| 13 | Dewpoint temperature (port side)      | degC    | 6sec. averaged                |
| 14 | Relative humidity (starboard side)    | %       | 6sec. averaged                |
| 15 | Relative humidity (port side)         | %       | 6sec. averaged                |
| 16 | Sea surface temperature               | degC    | 6sec. averaged                |
| 17 | Rain rate (optical rain gauge)        | mm/hr   | hourly accumulation           |
| 18 | Rain rate (capacitive rain gauge)     | mm/hr   | hourly accumulation           |
| 19 | Down welling shortwave radiation      | $W/m^2$ | 6sec. averaged                |
| 20 | Down welling infra-red radiation      | $W/m^2$ | 6sec. averaged                |
| 21 | Significant wave height (fore)        | m       | hourly                        |
| 22 | Significant wave height (aft)         | m       | hourly                        |
| 23 | Significant wave period               | second  | hourly                        |
| 24 | Significant wave period               | second  | hourly                        |
|    |                                       |         |                               |

Table 6.1.1-2: Parameters of Mirai meteorological observation system

(3-2) Shipboard Oceanographic and Atmospheric Radiation (SOAR) system

SOAR system, designed by BNL (Brookhaven National Laboratory, USA), is consisted of 3 parts.

- 1. Portable Radiation Package (PRP) designed by BNL short and long wave downward radiation
- 2. Zeno meteorological system designed by BNL wind, air temperature, relative humidity, pressure and rainfall measurement
- 3. Scientific Computer System (SCS) designed by NOAA (National Oceanographic and Atmospheric Administration, USA) centralized data acquisition and logging of all data sets.

SCS recorded PRP data every 6 seconds, Zeno/met data every 10 seconds. Instruments and their locations are listed in Table 6.1.1-3 and measured parameters are listed in Table 6.1.1-4

| Sensors                  | Туре         | Manufacturer            | Location (altitude from surface) |  |
|--------------------------|--------------|-------------------------|----------------------------------|--|
| Zeno/Met                 |              |                         |                                  |  |
| Anemometer               | 05106        | R.M. Young, USA         | foremast (25m)                   |  |
| Tair/RH                  | HMP45A       | Vaisala, Finland        | foremast (24m)                   |  |
|                          | with 43408 C | Gill aspirated radiatio | on shield (R.M. Young)           |  |
| Barometer                | 61201        | R.M. Young, USA         | foremast (24m)                   |  |
|                          | with 61002 C | Gill pressure port (R.) | M. Young)                        |  |
| Rain gauge               | 50202        | R. M. Young, USA        | foremast (24m)                   |  |
| Optical rain gauge       | ORG-815DA    | Osi, USA                | foremast (24m)                   |  |
| PRP                      |              |                         |                                  |  |
| Radiometer (short wave)  | PSP          | Eppley, USA             | foremast (25m)                   |  |
| Radiometer (long wave)   | PIR          | Eppley, USA             | foremast (25m)                   |  |
| Fast rotating shadowband | radiometer   | Yankee, USA             | foremast (25m)                   |  |

| Table 6.1.1-3: Instruments and their installation loc | cations of SOAR system |
|-------------------------------------------------------|------------------------|
|-------------------------------------------------------|------------------------|

|    | Parmeter                              | Units   | Remarks       |
|----|---------------------------------------|---------|---------------|
| 1  | Latitude                              | degree  |               |
| 2  | Longitude                             | degree  |               |
| 3  | Sog                                   | knot    |               |
| 4  | Cog                                   | degree  |               |
| 5  | Relative wind speed                   | m/s     |               |
| 6  | Relative wind direction               | degree  |               |
| 7  | Barometric pressure                   | hPa     |               |
| 8  | Air temperature                       | degC    |               |
| 9  | Relative humidity                     | %       |               |
| 10 | Rain rate (optical rain gauge)        | mm/hr   |               |
| 11 | Precipitation (capacitive rain gauge) | mm      | reset at 50mm |
| 12 | Down welling shortwave radiation      | $W/m^2$ |               |
| 13 | Down welling infra-red radiation      | $W/m^2$ |               |
| 14 | Defuse irradiance                     | $W/m^2$ |               |
|    |                                       |         |               |

# Table 6.1.1-4: Parameters of SOAR system

#### (4) Preliminary results

Figure 6.1.1-1 shows the time series of the following parameters during the stationary observation period; Wind (SOAR), air temperature (SOAR), relative humidity (SOAR), precipitation (SOAR), short/long wave radiation (SOAR), pressure (SOAR). 60 minutes accumulated precipitation data from SOAR optical rain gauge was converted to the rainfall intensity.

#### (5) Data archives

These raw data will be submitted to the Marine-Earth Data and Information Department (MEDID) of JAMSTEC just after the cruise.

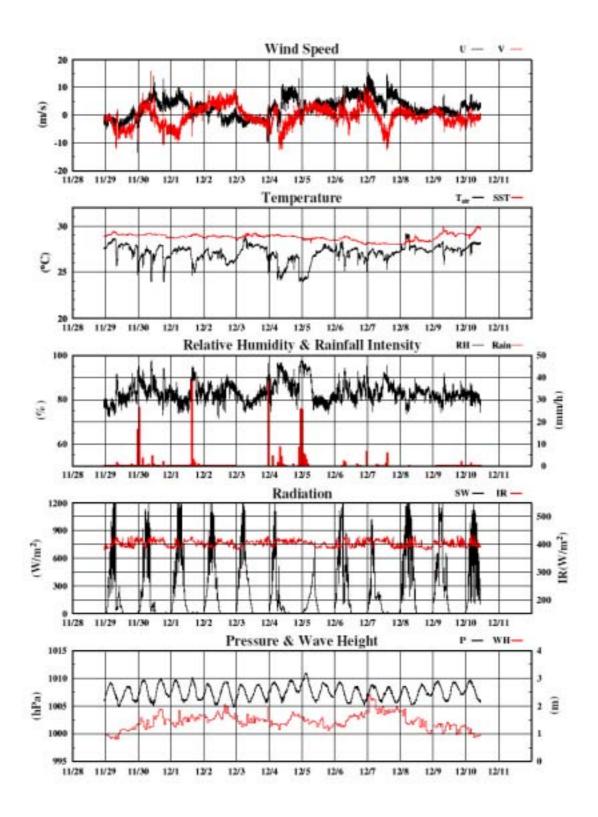



Figure 6.1.1-1: Time series of surface meteorological parameters during the stationary observation.

# 6.1.2 Ceilometer

(1) Personnel

Kunio Yoneyama (JAMSTEC): Principal Investigator (not onboard) Souichiro Sueyoshi (GODI) Norio Nagahama (GODI) Ryo Ohyama (GODI)

#### (2) Objective

The information of the cloud base height is important to understand the processes on the exchange of water and energy between the atmospheric boundary layer and the layer above, and horizontal / vertical distribution of the cloud. As one of the methods to measure them, the ceilometer observation was carried out.

#### (3) Methods

We measured cloud base height and backscatter profile using CT-25K (VAISALA, Finland) ceilometer throughout MR06-05 Leg2 cruise.

Major parameters for the measurement configuration are as follows;

| Indium Gallium Arsenide (InGaAs) Diode |
|----------------------------------------|
| 905±5 nm at 25 deg-C                   |
| 8.9 mW                                 |
| 5.57kHz                                |
| Silicon avalanche photodiode (APD)     |
| 65 A/W                                 |
| 0 ~ 7.5 km                             |
| 50 ft in full range                    |
| 60 sec                                 |
|                                        |

On the archived dataset, three cloud base height and backscatter profile are recorded with the resolution of 30 m (100 ft.). If the apparent cloud base height could not be determined, vertical visibility and the height of detected highest signal are calculated instead of the cloud base height.

# (4) Preliminary results

Fig. 6.1.2-1 shows the first, second and third lowest cloud base height which the ceilometer detected during the stationary observation.

#### (5) Data archives

Ceilometer data obtained during this cruise will be submitted to and archived by the Marine-Earth Data and Information Department (MEDID) of JAMSTEC.

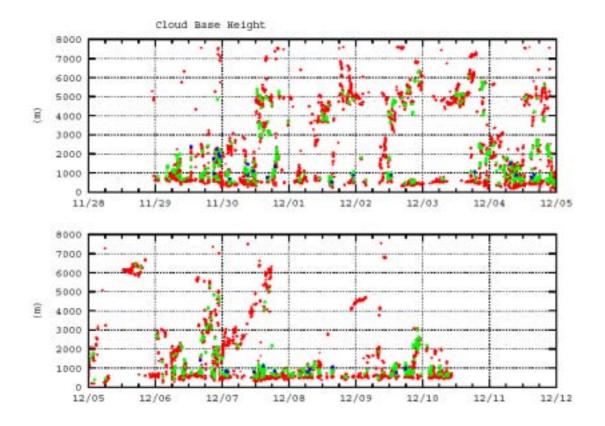



Figure 6.1.2-1 1st (red), 2nd (green) and 3rd (blue) lowest cloud base height during the cruise.

# 6.2 CTD/XCTD observations 6.2.1. CTD

| Personnel | Hideaki Hase   | (JAMSTEC): Principal Investigator |
|-----------|----------------|-----------------------------------|
|           | Satoshi Ozawa  | (MWJ): Operation leader           |
|           | Akinori Murata | (MWJ)                             |

(1) Objective

Investigation of oceanic structure and water sampling.

# (2) Overview of the equipment and observation

CTD/Carousel water sampling system (CTD system), which is 36-position Carousel Water Sampler (SBE 32) with SBE 9plus (Sea-Bird Electronics Inc) attached with sensors, was used during this cruise. 12-litter Niskin bottles were used for sampling seawater. The CTD system was deployed from starboard on working deck. During this cruise, 7 CTD observations were carried out (see Table 6.2.1-1). Sampling layers were shown in Table 6.2.1-2.

# (3) List of sensors and equipments

| Under water unit:                                              | SBE, Inc., SBE 9plus, S/N 0357              |  |  |  |
|----------------------------------------------------------------|---------------------------------------------|--|--|--|
| Temperature sensor: SBE, Inc.                                  | ., SBE 03-04/F, S/N 031359                  |  |  |  |
| Conductivity sensor: SBE, Inc.                                 | , SBE 04C, S/N 042854                       |  |  |  |
| Oxygen sensor:                                                 | SBE, Inc., SBE 43, S/N 430330               |  |  |  |
| Pump:                                                          | SBE, Inc., SBE 5T, S/N 053118               |  |  |  |
| Altimeter: Benthos,                                            | Inc, PSA-916T, S/N 1157                     |  |  |  |
| Fluorometer:                                                   | Seapoint Sensors, Inc, Clorophyll, S/N 2579 |  |  |  |
| Deck unit:                                                     | SBE, Inc., SBE 11plus, S/N 11P9833-0308     |  |  |  |
| Carousel Water Sampler:                                        | SBE, Inc., SBE 32, S/N 3227443-0278         |  |  |  |
| Water sample bottle: General Oceanics, Inc., 12-litre Niskin-X |                                             |  |  |  |

# (4) Data processing

The SEASOFT-Win32 (Ver. 5.27b) was used for processing the CTD data. Descriptions and settings of the parameters for the SEASOFT were written as follows.

DATCNV converted the raw data to scan number, pressure, depth, time elapsed, temperature, conductivity, oxygen voltage, altitude, desent rate, modulo error count and pump status. DATCNV also extracted bottle information where scans were marked with the bottle confirm bit during acquisition. The duration was set to 3.0 seconds, and the offset was set to 0.0 seconds.

ROSSUM created a summary of the bottle data. The bottle position, date, time were output as the first two columns. Scannumber, pressure, depth, temperature, conductivity, oxygen voltage, fluorometer, altimter and descent rate were over 3.0 seconds. And Oxygen, Salinity, sigma-theta and potential temperature were computed.

ALIGNCTD converted the time-sequence of oxygen sensor outputs into the pressure sequence to ensure that all calculations were made using measurements from the same parcel of water. For a SBE 9plus CTD with the ducted temperature and conductivity sensors and a 3000 rpm pump, the typical net advance of the conductivity relative to the temperature is 0.073 seconds. So, the SBE 11plus deck unit S/N 11P9833-0308 was set to advance the primary conductivity for 1.73 scans (1.75/24 = 0.073 seconds). Oxygen data are also systematically delayed with respect to depth mainly because of the long time constant of the oxygen sensor and of an additional delay from the transit time of water in the pumped plumbing line. This delay was compensated by 6 seconds advancing oxygen sensor output (oxygen voltage) relative to the pressure.

WILDEDIT marked extreme outliers in the data files. The first pass of WILDEDIT obtained an accurate estimate of the true standard deviation of the data. The data were read in blocks of 1000 scans. Data greater than 10 standard deviations were flagged. The second pass computed a standard deviation over the same 1000 scans excluding the flagged values. Values greater than 20 standard deviations were marked bad. This process was applied to pressure, depth, temperatur, conductivity, oxygen voltage, altitude, decent rate and oxygen outputs.

CELLTM used a recursive filter to remove conductivity cell thermal mass effects from the measured conductivity. Typical values used were thermal anomaly amplitude alpha = 0.03 and the time constant 1/beta = 7.0.

FILTER performed a low pass filter on pressure with a time constant of 0.15 seconds. In order to produce zero phase lag (no time shift) the filter runs forward first then backwards.

WFILTER performed a median filter on fluorometer with a window size of 49.

SECTION selected a time span of data based on scan number in order to reduce a file size. The minimum number was set to be the starting time when the CTD package was beneath the sea-surface after activation of the pump. The maximum number was set to be the end time when the package came up from the surface.

LOOPEDIT marked scans where the CTD was moving less than the minimum velocity of 0.0 m/s (traveling backwards due to ship roll).

DERIVE was used to compute oxygen.

BINAVG averaged the data into 1 dbar pressure bins. The center value of the first bin was set equal to the bin size. The bin minimum and maximum values are the center value plus and minus half the bin size. Scans with pressures greater than the minimum and less than or equal to the maximum were averaged. Scans were interpolated so that a data record exists every dbar.

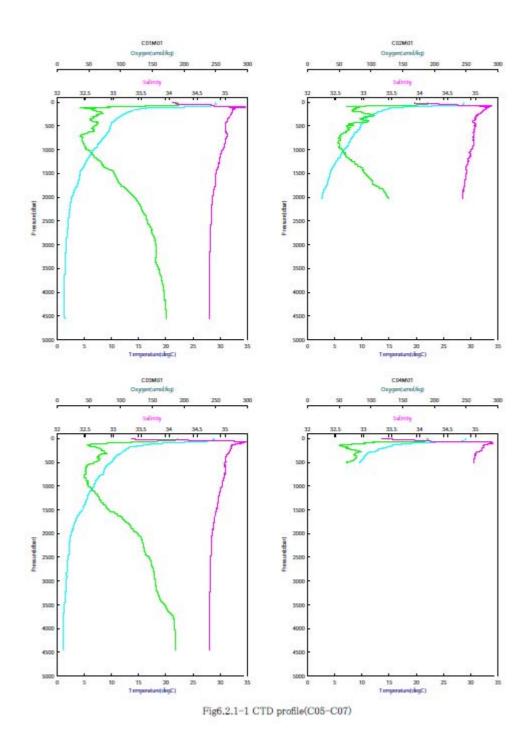
DERIVE was re-used to compute salinity, sigma-theta and potential temperature

SPLIT was used to split data into the down cast and the up cast.

(5) Preliminary Results

Date, time and locations of the CTD casts are listed in Table 6.2.1-1. Vertical profile of temperature salinity and oxygen with pressure are shown in Figure 6.2.1-1, 6.2.1-2.

# (6) Data archive


All raw and processed data files will be submitted to the Data Management Office (DMO) and will be opened to public via "R/V MIRAI Data Web Page" in the JAMSTEC web site.

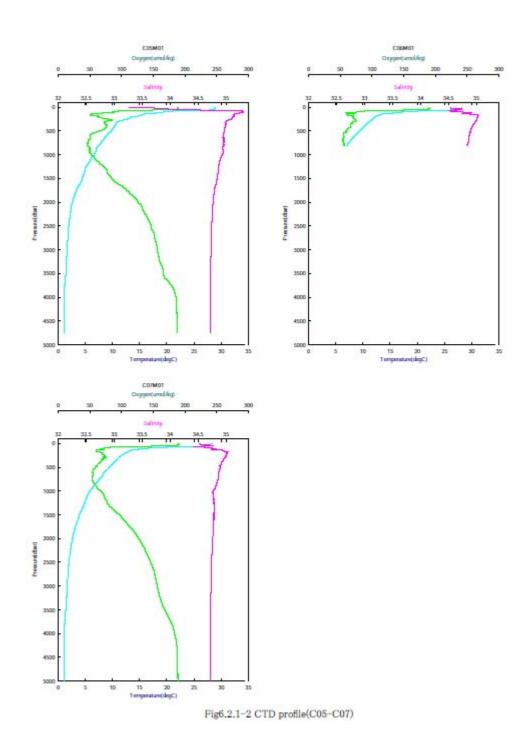

| Stmbr Castne |        | Date(UTC) | Time(UTC) |       | StartPosition |            | Depth | Wire   | HT Above | Max    | Max      | CTD      |
|--------------|--------|-----------|-----------|-------|---------------|------------|-------|--------|----------|--------|----------|----------|
| Sumor        | Castno | (mmddyy)  | Start     | End   | Latitude      | Longitude  | Deput | Out    | Bottom   | Depth  | Pressure | Filename |
| C01          | 1      | 113006    | 6:09      | 9:09  | 01-32.39N     | 080-31.80E | 4537  | 4504.7 | 37.1     | 4489.9 | 4563.2   | C01M01   |
| C02          | 1      | 120106    | 6:35      | 8:12  | 01-30.08S     | 080-31.26E | 4845  | 2012.6 |          | 2000.2 | 2021.4   | C02M01   |
| C03          | 1      | 120306    | 8:31      | 11:26 | 00-03.20N     | 089-55.30E | 4409  | 4390.9 | 25.7     | 4376   | 4446.2   | C03M01   |
| C04          | 1      | 120406    | 7:02      | 7:34  | 01-41.33S     | 090-10.36E | 4715  | 505.3  |          | 500.2  | 503.4    | C04M01   |
| C05          | 1      | 120506    | 7:02      | 10:01 | 01-38.335     | 090-00.46E | 4692  | 4687.8 | 22.8     | 4661.2 | 4739.3   | C05M01   |
| C06          | 1      | 120706    | 11:03     | 11:30 | 04-57.98S     | 094-59.25E | 5005  | 807.2  |          | 800.9  | 806.7    | C06M01   |
| C07          | 1      | 120806    | 7:01      | 10:04 | 04-56.20S     | 095-01.75E | 5001  | 4989.1 | 15.3     | 4974.3 | 5060.8   | C07M01   |

Table 6.2.1-1 CTD Casttable

| Stn :  | Stn: C01 Stn: C02 |        | Stn   | : C03  | Stn :  | C04    | Stn :    | C05    | Stn :  | C07    |        |
|--------|-------------------|--------|-------|--------|--------|--------|----------|--------|--------|--------|--------|
| Niskin | Depth             | Niskin | Depth | Niskin | Depth  | Niskin | Depth    | Niskin | Depth  | Niskin | Depth  |
| No.    | [m]               | No.    | [m]   | No.    | [m]    | No.    | [m]      | No.    | [m]    | No.    | [m]    |
| 1      | Bottom            | 1      | 2000  | 1      | Bottom | 1      | 500      | 1      | Bottom | 1      | Botton |
| 2      | 4000              | 2      | 700   | 2      | 4000   | 2      | -        | 2      | 4000   | 2      | 4000   |
| 3      | 3000              | 3      | 10    | 3      | 3000   | 3      |          | 3      | 3000   | 3      | 3000   |
| 4      | 2000              | 4      | 2000  | 4      | 2000   | 4      | 300      | 4      | 2000   | 4      | 2000   |
| 5      | 1800              | 5      | 1800  | 5      | 1800   | 5      | -        | 5      | 1800   | 5      | 1800   |
| 6      | 1600              | 6      | 1600  | 6      | 1600   | 6      | -        | 6      | 1600   | 6      | 1600   |
| 7      | 1400              | 7      | 1400  | 7      | 1400   | 7      | 200      | 7      | 1400   | 7      | 1400   |
| S      | 1200              | 8      | 1200  | 8      | 1200   | 8      | -        | 8      | 1200   | 8      | 1200   |
| 9      | 1000              | 9      | 1000  | 9      | 1000   | 9      | - 1      | 9      | 1000   | 9      | 1000   |
| 10     | 900               | 10     | 900   | 10     | 900    | 10     | 140      | 10     | 900    | 10     | 900    |
| 11     | 800               | 11     | 800   | 11     | 800    | 11     | - 23     | 11     | 800    | 11     | 800    |
| 12     | 700               | 12     | 700   | 12     | 700    | 12     | -        | 12     | 700    | 12     | 700    |
| 13     | 600               | 13     | 600   | 13     | 600    | 13     | 120      | 13     | 600    | 13     | 600    |
| 14     | 500               | 14     | 500   | 14     | 500    | 14     | - 21 - 3 | 14     | 500    | 14     | 500    |
| 15     | 400               | 15     | 400   | 15     | 400    | 15     | -        | 15     | 400    | 15     | 400    |
| 16     | 350               | 16     | 350   | 16     | 350    | 16     | 100      | 16     | 350    | 16     | 350    |
| 17     | 300               | 17     | 300   | 17     | 300    | 17     |          | 17     | 300    | 17     | 300    |
| 18     | 275               | 18     | 275   | 18     | 275    | 18     |          | 18     | 275    | 18     | 275    |
| 19     | 250               | 19     | 250   | 19     | 250    | 19     | 80       | 19     | 250    | 19     | 250    |
| 20     | 225               | 20     | 225   | 20     | 225    | 20     |          | 20     | 225    | 20     | 225    |
| 21     | 200               | 21     | 200   | 21     | 200    | 21     | - 21     | 21     | 200    | 21     | 200    |
| 22     | 175               | 22     | 175   | 22     | 175    | 22     | 60       | 22     | 175    | 22     | 175    |
| 23     | 150               | 23     | 150   | 23     | 150    | 23     | -        | 23     | 150    | 23     | 150    |
| 24     | 125               | 24     | 125   | 24     | 125    | 24     |          | 24     | 125    | 24     | 125    |
| 25     | 100               | 25     | 100   | 25     | 100    | 25     | 40       | 25     | 100    | 25     | 100    |
| 26     | 75                | 26     | 75    | 26     | 75     | 26     | -        | 26     | 75     | 26     | 75     |
| 27     | 50                | 27     | 50    | 27     | 50     | 27     | -        | 27     | 50     | 27     | 50     |
| 28     | 30                | 28     | 30    | 28     | 30     | 28     | 20       | 28     | 30     | 28     | 30     |
| 29     | 10                | 29     | 10    | 29     | 10     | 29     | -        | 29     | 10     | 29     | 10     |
| 30     | 10                | 30     | 10    | 30     | 10     | 30     | 10       | 30     | 10     | 30     | 10     |
| 31     | 200               | 31     | 175   | 31     | 150    | 31     | 10       | 31     | 160    | 31     | 150    |
| 32     | 150               | 32     | 125   | 32     | 100    | 32     | -        | 32     | 110    | 32     | 100    |
| 33     | 100               | 33     | 75    | 33     | 50     | 33     | -        | 33     | 60     | 33     | 50     |
| 34     | 710               | 34     | 100   | 34     | 800    | 34     | -        | 34     | 700    | 34     | 600    |
| 35     | 115               | 35     | 700   | 35     | 150    | 35     | 2        | 35     | 175    | 35     | 150    |
| 36     | 3000              | 36     | 100   | 36     | Bottom | 36     | -        | 36     | 1000   | 36     | 700    |

Table 6.2.1-2 Sampling layler





# 6.2.2 XCTD

Yoshihumi Kuroda (JAMSTEC) : Hideaki Hase (JAMSTEC) Souichiro Sueyoshi (Global Ocean Development Inc.) Norio Nagahama (GODI) Ryo Ohyama (GODI) Principal Investigator

#### (1) Objectives

Comparing to the data from TRITON buoy, the XCTD (eXpendable Conductivity, Temperature & Depth profiler) observation was carried out within 2 miles from TRITON buoy.

#### (2) Parameters

According to the manufacturer's information, the range and accuracy of parameters measured by the XCTD are as follows;

| Parameter    | Range         | Accuracy                                   |
|--------------|---------------|--------------------------------------------|
| Conductivity | 0~60 [mS]     | +/- 0.03 [mS/cm]                           |
| Temperature  | -2~35 [deg-C] | +/- 0.02 [deg-C]                           |
| Depth        | 0~1000 [m]    | 5 [m] or 2% at depth, whichever is greater |

## (3) Methods

We observed the vertical profiles of the sea water temperature and salinity measured by the XCTD-1 manufactured by Tsurumi-Seiki Co.. The signal was converted by MK-100, Tsurumi-Seiki Co. and was recorded by WinXCTD software (version 1.07) made by Tsurumi-Seiki Co..

We dropped 2 probes (X001-X002) by using automatic launcher. The summary of XCTD observation and launching log were shown in Table 6.2.2-1.

#### (4) Preliminary results

Vertical profile of temperature, salinity and conductivity were shown in the following Fig. 6.2.2-1.

#### (5) Data archives

XCTD data obtained in this cruise will be submitted to the JAMSTEC Marine-Earth Data and Information Department (MEDID) and will be available via "R/V MIRAI Data Web Page" in JAMSTEC home page.

| Table 6.2.2-1 | Summary of XCTD observation and launching log  |
|---------------|------------------------------------------------|
|               | Summary of The The Societ ( and maintening tog |

| Station |      | nc Time<br>(UTC) | Finish | Launch Position |           | Measured | Water | Surface | Surface  | Probe   |
|---------|------|------------------|--------|-----------------|-----------|----------|-------|---------|----------|---------|
| No.     | date | time             | time   | Latitude        | Longitude | Depth    | Depth | Temp.   | Salinity | S/N     |
| 001     | 12/5 | 05:24:04         | 05:29  | 01-35.12N       | 90-06.03E | 1035     | 4702  | 28.550  | 32.962   | 5022150 |
| 002     | 12/7 | 10:36:59         | 10:42  | 05-01.18S       | 94-59.67E | 1035     | 4011  | 28.047  | 34.517   | 5022149 |

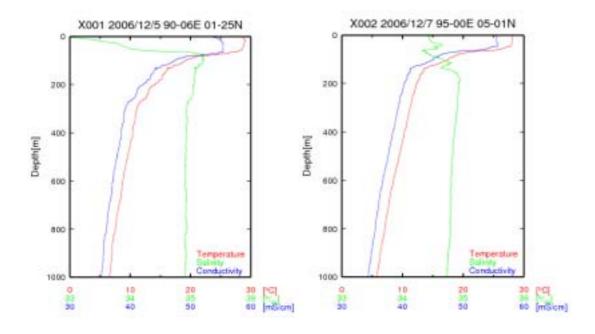



Fig 6.2.2-1 Profile of temperature, salinity and conductivity at each Station

# 6.3 Validation of CTD cast data

#### 6.3.1 Salinity measurement of sampled seawater

# (1) Personnel

Akinori Murata (MWJ) : Operation Leader

Satoshi Ozawa

(2) Objectives

To measure bottle salinity obtained by CTD casts and EPCS.

#### (3) Method

#### (3-1) Salinity Sample Collection

Seawater samples were collected with 12 liter Niskin-X bottles and EPCS. The 250ml brown glass bottle was used to collect the sample water. The sample bottle was sealed with a plastic insert thimble and a screw cap. Each bottle was rinsed three times with the sample water, and was filled with sample water to the bottle shoulder. Its cap and thimble were also thoroughly rinsed. The bottle was stored more than 24 hours in 'AUTOSAL ROOM' before the salinity measurement.

#### (3-2) Instruments and Methods

The salinity analysis was carried out on R/V MIRAI during the cruise of MR06-05 Leg2 using the salinometer (Model 8400B "AUTOSAL"; Guildline Instruments Ltd.: S/N 62827), with additional peristaltic-type intake pump (Ocean Scientific International, Ltd.). We also used two precision digital thermometers (Model 9540; Guildline Instruments Ltd.). One thermometer monitored an ambient temperature and the other monitored a bath temperature.

The specifications of AUTOSAL salinometer and thermometer are shown as follows ;

| Salinometer (Model 8400B "A | AUTOSAL"; Guildline Instruments Ltd.)         |
|-----------------------------|-----------------------------------------------|
| Measurement Range           | : 0.005 to 42 (PSU)                           |
| Accuracy                    | : Better than $\pm 0.002$ (PSU) over 24 hours |
|                             | without restandardization                     |
| Maximum Resolution          | : Better than $\pm 0.0002$ (PSU) at 35 (PSU)  |
|                             |                                               |
| Thermometer (Model 9540;    | Guildline Instruments Ltd.)                   |
| Measurement Range           | : -40 to +180 deg C                           |
| Resolution                  | : 0.001                                       |
| Limits of error ±deg C      | : 0.01 (24 hours @ 23 deg C $\pm 1$ deg C)    |
| Repeatability               | : ±2 least significant digits                 |

The measurement system was almost same as Aoyama *et al.* (2002). The salinometer was operated in the air-conditioned ship's laboratory at a bath temperature of 24 deg C. An ambient temperature varied from approximately 24.1 deg C to 24.7 deg C, while a bath temperature is

very stable and varied within +/- 0.004 deg C on rare occasion. We measured sub-standard seawater and confirmed that the salinometer was stable before the routine measurement of the day. The measurement for each sample was done with a double conductivity ratio that is defined as median of 31 times reading of the salinometer. Data collection was started in 5 seconds after filling sample to the cell and it took about 15 seconds to collect 31 readings by a personal computer. Data were taken for the sixth and seventh filling of the cell after five times rinse of the cell. In case the difference between the double conductivity ratio of these two fillings is smaller than 0.00002, the average value of these double conductivity ratio was used to calculate the bottle salinity with the algorithm for practical salinity scale, 1978 (UNESCO, 1981). If the difference was greater than or equal to 0.00003, we measured eighth filling of the cell. In case the double conductivity ratio of eighth filling did not satisfy the criteria above, we measured ninth filling of the cell.

The kind and number of samples are shown as follows ;

| Kind of samples  | Number of samples |
|------------------|-------------------|
| Samples for CTD  | 38                |
| Samples for EPCS | 12                |
| Total            | 50                |

Table 6.3.1-1: Kind and number of samples

#### (3-3) Standard Seawater

Standardization control was set to 393 and all the measurements were done by this setting. We used IAPSO Standard Seawater (SSW) batch P145 as the standard for salinity. And we measured the SSW in order to correct the measured salinity at the measurement of a day. We measured 6 bottles in total.

The specifications of SSW used in this cruise are shown as follows ;

Standard seawater (SSW)

| batch              | : | P145       |
|--------------------|---|------------|
| conductivity ratio | : | 0.99981    |
| salinity           | : | 34.993     |
| preparation date   | : | 15-Jul2004 |

#### (3-4) Sub-Standard Seawater

We also used sub-standard seawater which was obtained from 2,500m depth in MR06-02 cruise filtered by Millipore filter (pore size of 0.45  $\mu$  m), which was stored in a 20 liter polyethylene container and stirred for at least 24 hours before measuring. It was measured every about six samples in order to check the drift of the salinometer. During the whole measurements, there was no detectable sudden drift of the salinometer.

# (4) **Results**

# (4-1) Standard Seawater

The average and standard deviation of SSW were respectively 34.9925 and 0.0002 in salinity.

# (4-2) Replicate Samples

We took 14 pairs of replicate samples. The average and the standard deviation of the absolute difference of replicate samples were respectively 0.0002 and 0.0002 in salinity.

# (5) Data Archive

All data will be submitted to JAMSTEC Data Management Office (DMO) and is currently under its control.

# (6) Remarks

Reference

- Aoyama, M., T. Joyce, T. Kawano and Y. Takatsuki : Standard seawater comparison up to P129. Deep-Sea Research, I, Vol. 49, 1103 ~ 1114, 2002
- UNESCO : Tenth report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Technical Papers in Marine Science, 36, 25 pp., 1981

#### 6.4 Continuous monitoring of surface seawater

#### (1) Personnel

| Yoshifumi Kuroda | (JAMSTEC): Principal Investigator |
|------------------|-----------------------------------|
| Hideaki Hase     | (JAMSTEC)                         |
| Ayako Fujii      | (Tokyo Institute of Technology)   |
| Yuichi Sonoyama  | (MWJ): Operation leader           |
| Hideki Yamamoto  | (MWJ): Technical Staff            |
| Minoru Kamata    | (MWJ): Technical Staff            |

#### (2) Objective

Measurement of temperature, salinity, dissolved oxygen and fluorescence in the sea surface water.

#### (3) Methods

The Continuous Sea Surface Water Monitoring System (Nippon Kaiyo Co. Ltd.) has five kind of sensors and can automatically measure salinity, temperature (two systems), dissolved oxygen and fluorescence in near-sea surface water continuously, every 1-minute. Salinity is calculated by conductivity on the basis of PSS78. This system is located in the "sea surface monitoring laboratory" on R/V MIRAI. This system is connected to shipboard LAN-system. Measured data is stored in a hard disk of PC every 1-minute together with time and position of ship, and displayed in the data management PC machine.

Near-surface water was continuously pumped up to the laboratory and flowed into the *Continuous Sea Surface Water Monitoring System* through a vinyl-chloride pipe. The flow rate for the system is controlled by several valves and was 12L/min except with fluorometer (about 0.3L/min). The flow rate is measured with two flow meters.

Specification of the each sensor in this system of listed below.

## a) Temperature and Conductivity sensor

| SEACAT THERMOS     | SALINOGRAPH          |           |                                  |
|--------------------|----------------------|-----------|----------------------------------|
| Model:             | SBE-21, SEA-BIRD     | ELECTRO   | NICS, INC.                       |
| Serial number:     | 2126391-3126         |           |                                  |
| Measurement range: | Temperature -5 to +3 | 5,        | Conductivity 0 to 6.5 S m-1      |
| Accuracy:          | Temperature 0.01     | 6month-1, | Conductivity 0.001 S m-1 month-1 |
| Resolution:        | Temperatures 0.001   | ,         | Conductivity 0.0001 S m-1        |

b) Bottom of ship thermometer

| Model:             | SBE 3S,     | SEA-BIRD ELECTRONICS, INC. |
|--------------------|-------------|----------------------------|
| Serial number:     | 032607      |                            |
| Measurement range: | -5 to +35   |                            |
| Resolution:        | $\pm 0.001$ |                            |
| Stability:         | 0.002       | year-1                     |
|                    |             |                            |

| <ul> <li>c) Dissolved oxygen</li> </ul> | sensor                                  |
|-----------------------------------------|-----------------------------------------|
| Model:                                  | 2127A, HACH ULTRA ANALYTICS JAPAN, INC. |
| Serial number:                          | 44733                                   |
| Measurement rang                        | ge: 0 to 14 ppm                         |
| Accuracy:                               | ± 1% at 5 of correction range           |
| Stability:                              | 1% month-1                              |

| d) Fluorometer    |                                       |
|-------------------|---------------------------------------|
| Model:            | 10-AU-005, TURNER DESIGNS             |
| Serial number:    | 5562 FRXX                             |
| Detection limit:  | 5 ppt or less for chlorophyll a       |
| Stability:        | 0.5% month-1 of full scale            |
| e) Flow meter     |                                       |
| Model:            | EMARG2W, Aichi Watch Electronics LTD. |
| Serial number:    | 8672                                  |
| Measurement range | : 0 to 30 l min-1                     |
| Accuracy:         | ±1%                                   |
| Stability:        | ±1% day-1                             |
|                   |                                       |
|                   |                                       |

The monitoring periods (UTC) during this cruise are listed below. Start : 2006/11/28 23:00 Stop : 2006/12/10 11:00 Start : 2006/12/11 22:00 Stop : 2006/12/12 10:00

# (4) Preliminary Result

Preliminary data of temperature (Bottom of ship thermometer), salinity, dissolved oxygen, fluorescence at sea surface between this cruise are shown in Fig.6.4-1~4. We took the surface water samples to compare sensor data wih bottle data of salinity and dissolved oxygen for one-time per day, and measured. They are shown in Fig.6.4-5~7. All the salinity samples were analyzed by the Guildline 8400B, dissolve oxygen samples were analyzed by the KIMOTO DOT-01.

## (5) Date archive

The data were stored on a CD-R, which will be submitted to the Data Management Office (DMO) JAMSTEC, and will be opened to public via" R/V MIRAI Data Web Page "in JAMSTEC homepage.

#### (6) Remarks

We did not collect the data in the EEZ of Republic of Moldives from 4:00-28-November to 23:00-28-November 2006, and of the United States of Indonesia from 11:00-10-December to 22:00-11-December 2006.

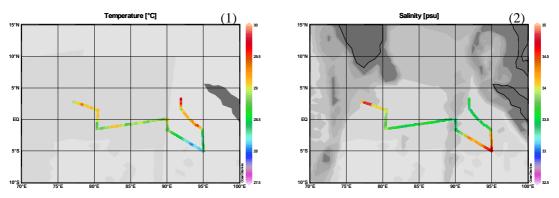



Fig.6.4-1,2 Spatial and temporal distribution of temperature (left) and Salinity.

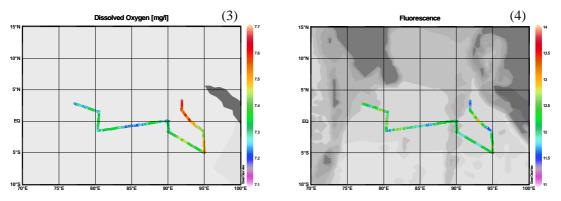



Fig.6.4-3,4 Spatial and temporal distribution of dissolved oxygen (left) and fluorescence.

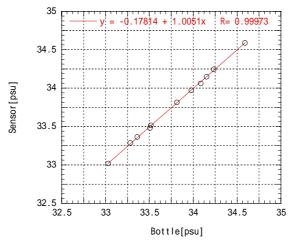



Fig.6.4-5 Comparison between salinity sensor and bottle data

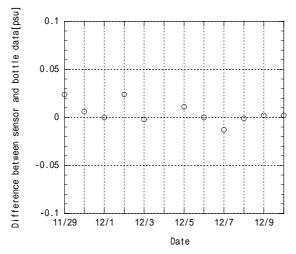



Fig.6.4-6 Difference in value between salinity sensor and bottle data

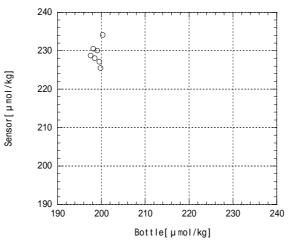



Fig.6.4-7 Comparison between dissolved oxygen sensor and bottle data

## 6.5 Shipboard ADCP

### (1) Personnel

Yoshifumi Kuroda(JAMSTEC): Principal InvestigatorSouichiro Sueyoshi(GODI)Norio Nagahama(GODI)Ryo Oyama(GODI)

## (2) Objective

To obtain continuous measurement of the current profile along the ship's track.

## (3) Methods

Upper ocean current measurements were made throughout MR06-05 Leg2 cruise, using the hull-mounted Acoustic Doppler Current Profiler (ADCP) system that is permanently installed on the R/V Mirai. For most of its operation, the instrument was configured for water-tracking mode recording. Bottom-tracking mode, interleaved bottom-ping with water-ping, was made in shallower water region to get the calibration data for evaluating transducer misalignment angle. The system consists of following components;

- ) 75 kHz Broadband (coded-pulse) profiler with 4-beam Doppler sonar operating (RD Instruments, USA), mounted with beams pointing 30 degrees from the vertical and 45 degrees azimuth from the keel;
- ) the Ship's main gyro compass (Tokimec, Japan), continuously providing ship's heading measurements to the ADCP;
- ) a GPS navigation receiver (Trimble 4000DS ) providing position fixes;
- ) a personal computer running data acquisition software (VmDas version 1.4.0, RD Instruments, USA). The clock of the logging PC are adjusted to GPS time every 10 minutes.
- ) high-precision attitude information, heading, pitch and roll, are also stored in N2R data files with a time stamp.

The ADCP was configured for 16 m processing bin and 8 m blanking distance. The sound speed at the transducer is calculated from temperature, salinity (constant value; 35.0 psu) and depth (6.5 m; transducer depth) by equation in Medwin (1975). Data was made at 16-m intervals starting 31-m below the surface. Every ping was recorded as raw ensemble data (.ENR). Also, 60 seconds and 300 seconds averaged data were recorded as short term average (.STA) and long term average (.LTA) data, respectively. Major parameters for the measurement (Direct Command) are shown bellow;

## **Bottom-Track Commands**

| BP = 001                 | Pings per Ensemble                                     |
|--------------------------|--------------------------------------------------------|
| Environmental Sensor Co. | mmands                                                 |
| EA = +00000              | Heading Alignment (1/100 deg)                          |
| EB = +00000              | Heading Bias (1/100 deg)                               |
| ED = 00065               | Transducer Depth (0 - 65535 dm)                        |
| EF = +0001               | Pitch/Roll Divisor/Multiplier (pos/neg) [1/99 - 99]    |
| EH = 00000               | Heading (1/100 deg)                                    |
| $\mathbf{ES} = 35$       | Salinity (0-40 pp thousand)                            |
| EX = 00000               | Coord Transform (Xform:Type; Tilts; 3Bm; Map)          |
| EZ = 1020001             | Sensor Source (C;D;H;P;R;S;T)                          |
|                          | C(1): Sound velocity calculate using ED, ES, ET(temp.) |
|                          | D(0): Manual ED                                        |
|                          | H(2): External synchro                                 |

P(0), R(0): Manual EP, ER (0 degree) S(0): Manual ES T(1): Internal transducer sensor

T(1): Internal transducer sensor

| Timing Commands            |                                              |
|----------------------------|----------------------------------------------|
| TE = 00:00:02.00           | Time per Ensemble (hrs:min:sec.sec/100)      |
| TP = 00:02.00              | Time per Ping (min:sec.sec/100)              |
| Water-Track Commands       |                                              |
| WA = 255                   | False Target Threshold (Max) (0-255 counts)  |
| WB = 1                     | Mode 1 Bandwidth Control (0=Wid,1=Med,2=Nar) |
| WC = 064                   | Low Correlation Threshold (0-255)            |
| WD = 111 111 111           | Data Out (V;C;A PG;St;Vsum Vsum^2;#G;P0)     |
| WE = 5000                  | Error Velocity Threshold (0-5000 mm/s)       |
| WF = 0800                  | Blank After Transmit (cm)                    |
| WG = 001                   | Percent Good Minimum (0-100%)                |
| WI = 0                     | Clip Data Past Bottom (0=OFF,1=ON)           |
| WJ = 1                     | Rcvr Gain Select (0=Low,1=High)              |
| $\mathbf{W}\mathbf{M} = 1$ | Profiling Mode (1-8)                         |
| WN = 040                   | Number of depth cells (1-128)                |
| WP = 00001                 | Pings per Ensemble (0-16384)                 |
| WS = 1600                  | Depth Cell Size (cm)                         |
| WT = 000                   | Transmit Length (cm) $[0 = Bin Length]$      |
| WV = 999                   | Mode 1 Ambiguity Velocity (cm/s radial)      |
|                            |                                              |

## (4) Preliminary results

Fig. 6.5-1 to Fig. 6.5-3 were showed water current vector along the ship track. The data were processed LTA data using CODAS (Common Oceanographic Data Access System) software, developed at the University of Hawaii.

# (5) Data archive

These data obtained in this cruise will be submitted to the Marine-Earth Data and Information Department (MEDID) of JAMSTEC, and will be opened to the public via "R/V Mirai Data Web Page" in JAMSTEC home page.

# (6) Remarks

1. Because the temperature sensor of transducer had failure, calculated sound velocity had bad value. Therefore, bad ADCP data is contained on following period.

5 December 23:25 – 7 December 04:35 (UTC)

 Following period, we changed sound velocity to fixed value using direct command (EZ0020001 and ECxxxx) in definition file. EC1542 (m/s) : 7 December 04:43 – 11 December 10:00 (UTC)

EC1542 (m/s): / December 04:45 – 11 December 10:00 (UTC)

- EC1541 (m/s) : 11 December 22:08 12 December 10:00 (UTC)
- 3. ADCP observation stopped in the following period due to communication trouble between deck unit and transducer.

28 November 23:00 - 29 November 05:40 (UTC)

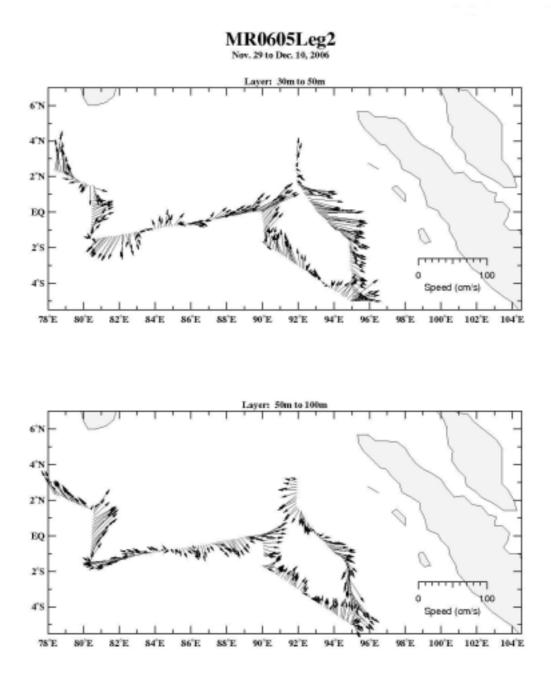



Fig. 6.5-1 Water current vector. (Water depth layer: 30 m to 50 m and 50 m to 100 m)

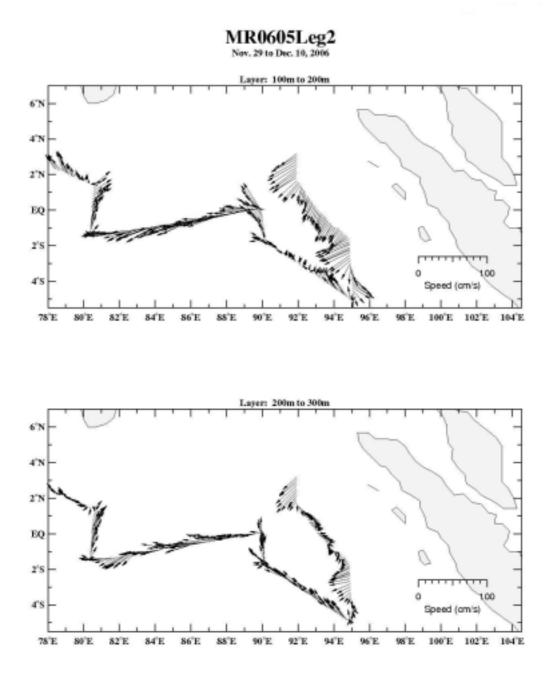



Fig. 6.5-2 Water current vector. (Water depth layer: 100 m to 200 m and 200 m to 300 m)

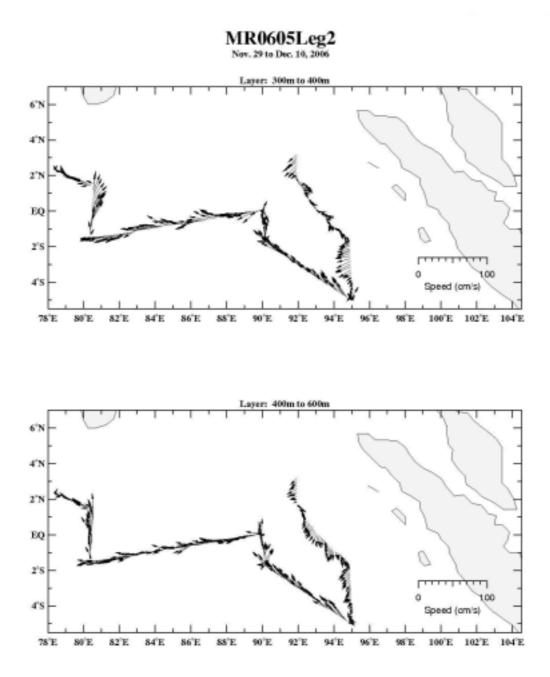



Fig. 6.5-3 Water current vector. (Water depth layer: 300 m to 400 m and 400 m to 600 m)

# 6.6 Underway geophysics6.6.1 Sea Surface Gravity

Takeshi Matsumoto(University of the Ryukyus) :Principal investigator (Not on-board)Souichiro Sueyoshi(Global Ocean Development Inc.)Norio Nagahama(GODI)Ryo Ohyama(GODI)

(1) Introduction

The distribution of local gravity is an important parameter in geophysics and geodesy. We collected gravity data at the sea surface during the MR06-05 leg2 cruise from Male, Maldives on 28th November 2006 to Singapore on 13th December 2006.

(2) Parameters

Relative Gravity [CU: Counter Unit] [mGal] = (coef1: 0.9946) \* [CU]

## (3) Data Acquisition

We have measured relative gravity using LaCoste and Romberg air-sea gravity meter S-116 (LaCoste and Romberg Gravity Meters, Inc.) during this cruise. To convert the relative gravity to absolute one, we measured gravity using portable gravity meter (Scintrex gravity meter CG-3M), at Sekinehama Port as reference points.

## (4) Preliminary Results

Absolute gravity shown in Table 6.6.1-1

| Table 6.6.1-1 |                  |                               |     |       |                                               |                                         |
|---------------|------------------|-------------------------------|-----|-------|-----------------------------------------------|-----------------------------------------|
| No. Date      | U.T.C. Port      | Absolute<br>Gravity<br>[mGal] |     | Draft | Gravity at<br>Sensor * <sup>1</sup><br>[mGal] | L&R * <sup>2</sup><br>Gravity<br>[mGal] |
| Oct./3        | 03:33 Sekinehama | 980371.95                     | 227 | 635   | 980372.70                                     | 12712.31                                |

\*<sup>1</sup>: Gravity at Sensor = Absolute Gravity + Sea Level\*0.3086/100 + (Draft-530)/100\*0.0431 \*<sup>2</sup>: LaCoste and Romberg air-sea gravity meter S-116

# (5) Data Archives

Gravity data obtained during this cruise will be submitted to the JAMSTEC Marine-Earth Data and Information Department (MEDID), and archived there.

## 6.6.2 Sea Surface Three-Component Magnetic Field

| Takeshi Matsumoto  | (University of the Ryukyus) :Principal investigator (Not on-board) |
|--------------------|--------------------------------------------------------------------|
| Souichiro Sueyoshi | (Global Ocean Development Inc.)                                    |
| Norio Nagahama     | (GODI)                                                             |
| Ryo Ohyama         | (GODI)                                                             |

## (1) Introduction

Measurement of magnetic force on the sea is required for the geophysical investigations of marine magnetic anomaly caused by magnetization in upper crustal structure. We measured geomagnetic field using a three-component magnetometer during the MR06-K05 leg2 cruise from Male, Maldives on 28 November 2006 to Singapore on 13 December 2006.

#### (2) Parameters

Three-component magnetic force [ nT ] Ship's attitude [ 1/100 deg ]

# (3) Method of Data Acquisition

A sensor of three-component fluxgate magnetometer is set on the top of foremast. Sampling is controlled by 1pps (pulse per second) standard clock of GPS signals. Navigation information, 8 Hz three-component of magnetic force, and VRU (Vertical Reference Unit) data are recorded every one second.

For calibration of the ship's magnetic effect, we made a running like a "figure-eight" turn (a pair of clockwise and anti-clockwise rotation). This calibration carried out as below.

7 December 2006, 12:15 to 12:35 about at 04-58S, 95-02E

## (4) Preliminary Results

The results will be published after primary processing.

#### (5) Data Archives

Magnetic force data obtained during this cruise will be submitted to the JAMSTEC Marine-Earth Data and Information Department (MEDID), and archived there.

## (6) Remarks

No data : 3 Dec 2006 07:21 - 08:35UTC, due to the logging software trouble

## 6.6.3 Swath Bathymetry

| Takeshi Matsumoto  | (University of the Ryukyus) :Principal investigator (Not on-board) |
|--------------------|--------------------------------------------------------------------|
| Souichiro Sueyoshi | (Global Ocean Development Inc.)                                    |
| Norio Nagahama     | (GODI)                                                             |
| Ryo Ohyama         | (GODI)                                                             |

## (1) Introduction

R/V MIRAI is equipped with a Multi Narrow Beam Echo Sounding system (MNBES), SEABEAM 2112.004 (SeaBeam Instruments Inc.).

The objective is collecting continuous bathymetric data along ship's track to make a contribution to geological and geophysical investigations and global datasets. In addition, we need to confirm the depth at the location of deployment of TRITON buoys and ADCP mooring buoys in order to design these mooring systems.

#### (2) Data Acquisition

The "SEABEAM 2100" on R/V MIRAI was used for bathymetry mapping during the this cruise from Male, Maldives on 28th November 2006 to Singapore on 13th December except for the territorial waters of foreign countries.

To get accurate sound velocity of water column for ray-path correction of acoustic multibeam, we used Surface Sound Velocimeter (SSV) data at the surface (6.2m) sound velocity, and the others depth sound velocity calculated temperature and salinity profiles from CTD data by the equation in Mackenzie (1981) during the cruise.

Table 6.6.3-1 listed system configuration and performance of SEABEAM 2112.004 system and SBP subsystem.

 Table 6.6.3-1
 System configuration and performance

#### SEABEAM 2112.004 (12kHz system)

| Frequency:             | 12 kHz                                               |
|------------------------|------------------------------------------------------|
| Transmit beam width:   | 2 degree                                             |
| Transmit power:        | 20 kW                                                |
| Transmit pulse length: | 3 to 20 msec.                                        |
| Depth range:           | 100 to 11,000 m                                      |
| Beam spacing:          | 1 degree athwart ship                                |
| Swath width:           | 150 degree (max)                                     |
|                        | 120 degree to 4,500 m                                |
|                        | 100 degree to 6,000 m                                |
|                        | 90 degree to 11,000 m                                |
| Depth accuracy:        | Within $< 0.5\%$ of depth or $+/-1m$ ,               |
|                        | whichever is greater, over the entire swath.         |
|                        | (Nadir beam has greater accuracy; typically within < |
|                        | 0.2% of depth or $\pm 1m$ , whichever is greater)    |

## (3) Preliminary Results

The results will be published after primary processing.

## (4) Data Archives

Bathymetric data obtained during this cruise will be submitted to the JAMSTEC Marine-Earth Data and Information Department, and archived there.

# 6.7 Satellite image acquisition

# 6.7.1 NOAA/HRPT

Yoshifumi Kuroda (JAMSTEC): Principal Investigator Souichiro Sueyoshi (GODI) Norio Nagahama (GODI) Ryo Ohyama (GODI)

(1) Objectives

It is our objectives to collect data of cloud image and sea surface temperature in a high spatial resolution mode from the Advance Very High Resolution Radiometer (AVHRR) on the NOAA polar orbiting satellites. Infrared (ch. 4) image provides cloud system information for atmospheric observation.

(2) Method

We receive the down link High Resolution Picture Transmission (HRPT) signal from NOAA satellites. We processed the HRPT signal with the in-flight calibration and computed the sea surface temperature by the Multi-Channel Sea Surface Temperature (MCSST) method. A daily composite map of MCSST data is processed for each day on the R/V MIRAI for the area, where the R/V MIRAI located.

We received and processed NOAA data throughout MR06-05 Leg2 cruise.

(3) Preliminary results

Fig. 6.7.1-1 shows sea surface temperature about eastern Indian Ocean. There were composite maps of MCSST data during the cruise.

(4) Data archives

These raw data will be submitted to the Marine-Earth Data and Information Department (MEDID) of JAMSTEC just after the cruise.

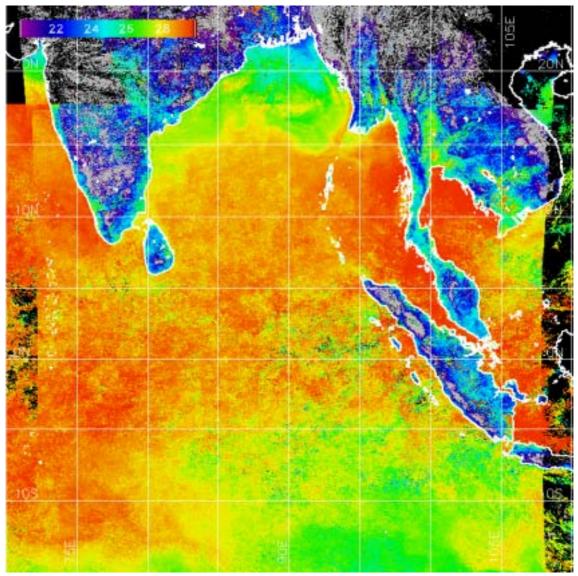



Fig. 6.7.1-1 MCSST composite image, from 28th November to 12th December 2006.

# 7 Special Observation 7.1 TRITON moorings 7.1.1 TRITON Mooring Operation

## (1) Personnel

| Yoshifumi Kuroda  | (JAMSTEC): Principal Investigator |
|-------------------|-----------------------------------|
| Hideaki Hase      | (JAMSTEC): Principal Investigator |
| Tomohide Noguchi  | (MWJ): Operation Leader           |
| Keisuke Matsumoto | (MWJ): Technical Leader           |
| Koichi Takao      | (MWJ): Technical Staff            |
| Nobuyuki Saito    | (MWJ): Technical Staff            |
| Hideki Yamamoto   | (MWJ): Technical Staff            |
| Satoshi Ozawa     | (MWJ): Technical Staff            |
| Toru Idai         | (MWJ): Technical Staff            |
| Masaki Furuhata   | (MWJ): Technical Staff            |
| Minoru Kamata     | (MWJ): Technical Staff            |
| Yuichi Sonoyama   | (MWJ): Technical Staff            |
| Akinori Murata    | (MWJ): Technical Staff            |
| Masaki Yamada     | (MWJ): Technical Staff            |
| Masatomo Hisazumi | (MWJ): Technical Staff            |

# (2) Objectives

The large-scale air-sea interaction over the warmest sea surface temperature region in the western tropical Pacific Ocean called warm pool that affects the global atmosphere and causes El Nino phenomena. The formation mechanism of the warm pool and the air-sea interaction over the warm pool have not been well understood. Therefore long term data sets of temperature, salinity, currents and meteorological elements have been required at fixed locations. The TRITON program aims to obtain the basic data to improve the predictions of El Nino and variations of Asia-Australian Monsoon system.

TRITON buoy array is integrated with the existing TAO (Tropical Atmosphere Ocean) array, which is presently operated by the Pacific Marine Environmental Laboratory/National Oceanic and Atmospheric Administration of the United States. TRITON is a component of international research program of CLIVAR (Climate Variability and Predictability), which is a major component of World Climate Research Program sponsored by the World Meteorological Organization, the International Council of Scientific Unions, and the Intergovernmental Oceanographic Commission of UNESCO. TRITON will also contribute to the development of GOOS (Global Ocean Observing System) and GCOS (Global Climate Observing System).

Two TRITON buoys have been successfully recovered and deployed during this R/V MIRAI cruise (MR06-05 Leg2).

(3) Measured parameters

| Meteorological parameters: | wind speed, direction, atmospheric pressure, air temperature, relative |
|----------------------------|------------------------------------------------------------------------|
|                            | humidity, radiation, precipitation.                                    |
| Oceanic parameters:        | water temperature and conductivity at 1.5m, 25m, 50m, 75m, 100m,       |
|                            | 125m, 150m, 200m, 300m, 500m 750m, depth at 300m and 750m,             |
|                            | currents at 10m.                                                       |

## (4) Instrument

| 1) CTD and CT                        |                                             |
|--------------------------------------|---------------------------------------------|
| SBE-37 IM MicroCAT                   |                                             |
| A/D cycles to average :              | 4                                           |
| Sampling interval :                  | 600sec                                      |
| Measurement range, Temper            | ature : -5 ~ +35 deg-C                      |
| Measurement range, Conduc            | tivity: $0 \sim +7$ S/m                     |
| Measurement range, Pressure          | e: $0 \sim \text{full scale range}$         |
| 2) CRN(Current meter)                |                                             |
| SonTek Argonaut ADCM                 |                                             |
| Sensor frequency :                   | 1500kHz                                     |
| Sampling interval :                  | 1200sec                                     |
| Average interval :                   | 120sec                                      |
| 3) Meteorological sensors            |                                             |
| Precipitation                        |                                             |
| R.M.YOUNG COMPANY M                  | ODEL50202/50203                             |
| Atmospheric pressure                 |                                             |
|                                      | JIQUARTZ FLOATING BAROMETER 6000SERIES      |
|                                      | e,Shortwave radiation, Wind speed/direction |
| Woods Hole Institution ASIM          | ET                                          |
| Sampling interval :                  | 60sec                                       |
| Data analysis :                      | 600sec averaged                             |
| (5) Locations of TRITON buoys deploy | mont                                        |
| Nominal location                     | 5S, 95E                                     |
| ID number at JAMSTEC                 | 17005                                       |
| Number on surface float              | T08                                         |
| ARGOS PTT number                     | 20275                                       |
| ARGOS backup PTT number              |                                             |
| Deployed date                        | 07 Dec. 2006                                |
| Exact location                       | 05 01.57S, 94 59.75 E                       |
| Depth                                | 5,012 m                                     |
| Depth                                | 5,012 m                                     |
| Nominal location                     | 1.5S, 90E                                   |
| ID number at JAMSTEC                 | 18006                                       |
| Number on surface float              | T14                                         |
| ARGOS PTT number                     | 23510                                       |
| ARGOS backup PTT number              | 13067                                       |
| Deployed date                        | 05 Dec. 2006                                |
| Exact location                       | 01 35.63S, 90 05.42 E                       |
| Depth                                | 4,712 m                                     |
|                                      |                                             |
| (6) TRITON recovered                 |                                             |
| Nominal location                     | 5S, 95E                                     |
| ID number at JAMSTEC                 | 17004                                       |
| Number on surface float              | T24                                         |
| ARGOS PTT number                     | 20384                                       |
| ARGOS backup PTT number              | 24233                                       |

| Deployed date<br>Recovered date<br>Exact location<br>Depth | 14 Aug. 2005<br>08 Dec. 2006<br>04 56.92S, 94 58.40 E<br>5,009m |
|------------------------------------------------------------|-----------------------------------------------------------------|
| Nominal location                                           | 1.5S, 90E                                                       |
| ID number at JAMSTEC<br>Number on surface float            | 18005<br>T25                                                    |
| ARGOS PTT number                                           | 20439                                                           |
| ARGOS backup PTT number                                    | 24240                                                           |
| Deployed date                                              | 10 Aug. 2005                                                    |
| Recovered date                                             | 06 Dec. 2006                                                    |
| Exact location                                             | 01 39.42S, 89 58.85 E                                           |
| Depth                                                      | 4,693m                                                          |

\*: Dates are UTC and represent anchor drop times for deployments and release time for recoveries, respectively.

# (6) Details of deployed

We had deployed two TRITON buoys, described them details in the list.

# Deployed TRITON buoys

| Observation No. | Location. | Details.                                                                                                                       |
|-----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| 17005           |           | Deploy with Ultrasonic waves WND, HRH, precipitation sensor on the tower and ten CT sensor, two CTD sensor, one current meter. |
| 18006           | 1.5S-90E  | Deploy with full spec.                                                                                                         |

# (7) Data archive

Hourly averaged data are transmitted through ARGOS satellite data transmission system in almost real time. The real time data are provided to meteorological organizations via Global Telecommunication System and utilized for daily weather forecast. The data will be also distributed world wide through Internet from JAMSTEC and PMEL home pages. All data will be archived at The JAMSTEC Mutsu Institute.

TRITON Homepage: http://www.jamstec.go.jp/jamstec/triton

## 7.1.2 Inter-comparison between shipboard CTD and TRITON data

## (1) Personnel

| Yoshifumi Kuroda  | (JAMSTEC): Principal Investigator |
|-------------------|-----------------------------------|
| Hideaki Hase      | (JAMSTEC): Principal Investigator |
| Keisuke Matsumoto | (MWJ): Operation Leader           |
| Satoshi Ozawa     | (MWJ): Technical staff            |
| Akinori Murata    | (MWJ): Technical staff            |

## (2) Objectives

# TRITON CTD data validation

## (3) Measured parameters

- Temperature
- Conductivity
- Pressure

#### (4) Methods

TRITON buoy underwater sensors are equipped along a wire cable of the buoy below sea surface. We used the same CTD (SBE 9/11Plus) system with general CTD observation (See section 5) on R/V MIRAI for this intercomparison. We conducted 1 CTD cast at each TRITON buoy site before recovery, conducted 1 CTD cast at each TRITON buoy site after deployment. The cast was performed immediately after the deployment and before recovery. R/V MIRAI was kept the distance from the TRITON buoy within about 2 nm.

TRITON buoy data was sampled every 1 hour except for transmission to the ship. We compared CTD observation by R/V MIRAI data with TRITON buoy data using the 1 hour averaged value.

As our temperature sensors are expected to be more stable than conductivity sensors, conductivity data and salinity data are selected at the same value of temperature data. Then, we calculate difference of salinity from conductivity between the shipboard CTD data on R/V MIRAI and the TRITON buoy data for each deployment and recovery of buoys.

## Compared site

| Observation No. | Latitude | Longitude | Condition        |
|-----------------|----------|-----------|------------------|
| 17005           | 5S       | 95E       | After Deployment |
| 18006           | 1.5S     | 90E       | After Deployment |
| 17004           | 5S       | 95E       | Before Recover   |
| 18005           | 1.5S     | 90E       | Before Recover   |

#### (5) Results

Most of temperature, conductivity and salinity data from TRITON buoy showed good agreement with CTD cast data in T-S diagrams. See the Figures 7.1.2-1(a)(b).

To evaluate the performance of the conductivity sensors on TRITON buoy, the data from had deployed buoy and shipboard CTD data at the same location were analyzed.

The estimations were calculated as deployed buoy data minus shipboard CTD data. The salinity differences are from -0.563 to 0.363 for all depths. Below 300db, salinity differences are from -0.019 to -0.000 (See the Figures 7.1.2-2 (a) and Table 7.1.2-1 (a)). The absolute average of all salinity differences was 0.067 with absolute standard deviation of 0.133.

The estimations were calculated as recovered buoy data minus shipboard CTD (9Plus) data. The salinity differences are from -2.713 to 0.160 for all depths. Below 300db, salinity differences are from -0.003 to 0.009 (See the Figures 7.1.2-2(b) and Table 7.1.2-1 (b)). The absolute average of salinity differences was 0.249 with absolute standard deviation of 0.715.

The estimations of time-drift were calculated as recovered buoy data minus deployed buoy data. The difference of salinity over 1 year had the variation ranging from -2.838 to 0.360, for all depths. Below 300db, the difference of salinity over 1 year had the variation ranging from -0.004 to 0.002 (See the figures 7.1.2-2(c)). The absolute average of salinity differences was 0.295 with absolute standard deviation of 0.731.

#### (6) Data archive

All raw and processed CTD data files were copied on 3.5 inch magnetic optical disks and submitted to JAMSTEC TOCS group of the Ocean Observation and Research Department. All original data will be stored at JAMSTEC Mutsu brunch. (See section 5)

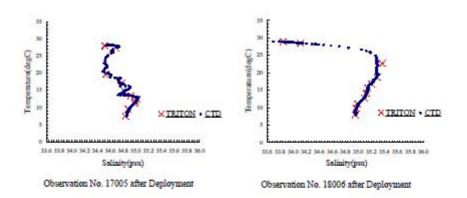



Fig.7.1.2.-1(a) T-S diagram of TRITON buoys data and shipboard CTD data

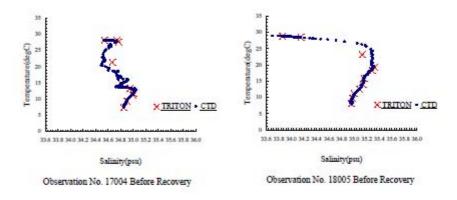
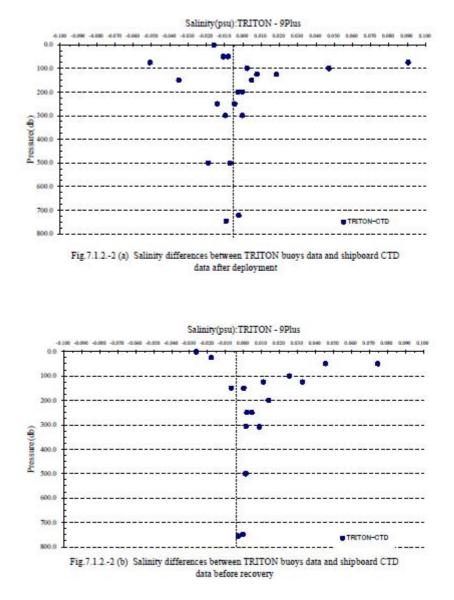
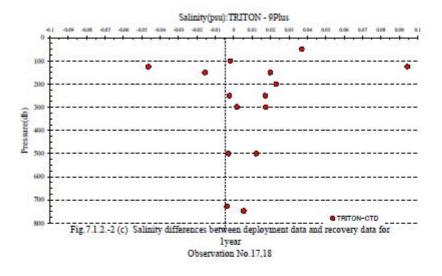





Fig.7.1.2.-1(b) T-S diagram of TRITON buoys data and shipboard CTD data





| (db)<br>1.5<br>25.0<br>50.0<br>75.0<br>100.0<br>125.0<br>125.0<br>125.0<br>200.0<br>250.0<br>299.6<br>500.0<br>746.8<br>1.5<br>25.0 | (degC)<br>-0.07<br>0.02<br>-0.07<br>0.00<br>0.02<br>-0.05<br>0.00<br>0.00<br>-0.01<br>0.00<br>0.00<br>0.00<br>0.00 | (S/m)<br>-0.009<br>-0.023<br>-0.009<br>-0.007<br>-0.007<br>-0.003<br>-0.004<br>0.000<br>-0.002<br>0.000<br>-0.001<br>-0.002<br>-0.002<br>-0.002                                                                           | (psu)<br>-0.016<br>-0.170<br>-0.011<br>-0.051<br>0.047<br>0.018<br>-0.035<br>-0.003<br>-0.014<br>0.000<br>-0.019<br>-0.009<br>-0.563                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25.0<br>50.0<br>75.0<br>100.0<br>125.0<br>150.0<br>200.0<br>250.0<br>299.6<br>500.0<br>746.8<br>1.5                                 | 0.02<br>-0.07<br>0.00<br>0.02<br>-0.05<br>0.00<br>0.00<br>-0.01<br>0.00<br>0.00<br>0.00                            | -0.023<br>-0.009<br>-0.007<br>-0.003<br>-0.004<br>0.000<br>-0.002<br>0.000<br>-0.001<br>-0.002                                                                                                                            | -0.170<br>-0.011<br>-0.051<br>0.047<br>0.018<br>-0.035<br>-0.003<br>-0.014<br>0.000<br>-0.019<br>-0.009                                                                                                                                                                                                                                   |
| 50.0<br>75.0<br>100.0<br>125.0<br>150.0<br>200.0<br>250.0<br>299.6<br>500.0<br>746.8<br>1.5                                         | -0.07<br>0.00<br>0.02<br>-0.05<br>0.00<br>0.00<br>-0.01<br>0.00<br>0.00<br>0.00                                    | -0.009<br>-0.007<br>0.007<br>-0.003<br>-0.004<br>0.000<br>-0.002<br>0.000<br>-0.001<br>-0.002                                                                                                                             | -0.011<br>-0.051<br>0.047<br>0.018<br>-0.035<br>-0.003<br>-0.014<br>0.000<br>-0.019<br>-0.009                                                                                                                                                                                                                                             |
| 75.0<br>100.0<br>125.0<br>150.0<br>200.0<br>250.0<br>299.6<br>500.0<br>746.8<br>1.5                                                 | 0.00<br>0.02<br>-0.05<br>0.00<br>0.00<br>-0.01<br>0.00<br>0.00<br>0.00                                             | -0.007<br>0.007<br>-0.003<br>-0.004<br>0.000<br>-0.002<br>0.000<br>-0.001<br>-0.002                                                                                                                                       | -0.051<br>0.047<br>0.018<br>-0.035<br>-0.003<br>-0.014<br>0.000<br>-0.019<br>-0.009                                                                                                                                                                                                                                                       |
| 100.0<br>125.0<br>150.0<br>200.0<br>250.0<br>299.6<br>500.0<br>746.8<br>1.5                                                         | 0.02<br>-0.05<br>0.00<br>0.00<br>-0.01<br>0.00<br>0.00<br>0.00                                                     | 0.007<br>-0.003<br>-0.004<br>0.000<br>-0.002<br>0.000<br>-0.001<br>-0.002                                                                                                                                                 | 0.047<br>0.018<br>-0.035<br>-0.003<br>-0.014<br>0.000<br>-0.019<br>-0.009                                                                                                                                                                                                                                                                 |
| 125.0<br>150.0<br>200.0<br>250.0<br>299.6<br>500.0<br>746.8<br>1.5                                                                  | -0.05<br>0.00<br>0.00<br>-0.01<br>0.00<br>0.00<br>0.00                                                             | -0.003<br>-0.004<br>0.000<br>-0.002<br>0.000<br>-0.001<br>-0.002                                                                                                                                                          | 0.018<br>-0.035<br>-0.003<br>-0.014<br>0.000<br>-0.019<br>-0.009                                                                                                                                                                                                                                                                          |
| 150.0<br>200.0<br>250.0<br>299.6<br>500.0<br>746.8<br>1.5                                                                           | 0.00<br>0.00<br>-0.01<br>0.00<br>0.00<br>0.00                                                                      | -0.004<br>0.000<br>-0.002<br>0.000<br>-0.001<br>-0.002                                                                                                                                                                    | -0.035<br>-0.003<br>-0.014<br>0.000<br>-0.019<br>-0.009                                                                                                                                                                                                                                                                                   |
| 200.0<br>250.0<br>299.6<br>500.0<br>746.8<br>1.5                                                                                    | 0.00<br>-0.01<br>0.00<br>0.00<br>0.00                                                                              | 0.000<br>-0.002<br>0.000<br>-0.001<br>-0.002                                                                                                                                                                              | -0.003<br>-0.014<br>0.000<br>-0.019<br>-0.009                                                                                                                                                                                                                                                                                             |
| 250.0<br>299.6<br>500.0<br>746.8<br>1.5                                                                                             | -0.01<br>0.00<br>0.00<br>0.00                                                                                      | -0.002<br>0.000<br>-0.001<br>-0.002                                                                                                                                                                                       | -0.014<br>0.000<br>-0.019<br>-0.009                                                                                                                                                                                                                                                                                                       |
| 299.6<br>500.0<br>746.8<br>1.5                                                                                                      | 0.00<br>0.00<br>0.00                                                                                               | 0.000<br>-0.001<br>-0.002                                                                                                                                                                                                 | 0.000<br>-0.019<br>-0.009                                                                                                                                                                                                                                                                                                                 |
| 500.0<br>746.8<br>1.5                                                                                                               | 0.00<br>0.00                                                                                                       | -0.001<br>-0.002                                                                                                                                                                                                          | -0.019<br>-0.009                                                                                                                                                                                                                                                                                                                          |
| 746.8<br>1.5                                                                                                                        | 0.00                                                                                                               | -0.002                                                                                                                                                                                                                    | -0.009                                                                                                                                                                                                                                                                                                                                    |
| 1.5                                                                                                                                 |                                                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                     | -0.41                                                                                                              | 0.123                                                                                                                                                                                                                     | 0 563                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                                                                                                                |                                                                                                                    |                                                                                                                                                                                                                           | -0.003                                                                                                                                                                                                                                                                                                                                    |
| 25.0                                                                                                                                | 0.00                                                                                                               | 0.053                                                                                                                                                                                                                     | 0.363                                                                                                                                                                                                                                                                                                                                     |
| 50.0                                                                                                                                | 0.00                                                                                                               | -0.001                                                                                                                                                                                                                    | -0.008                                                                                                                                                                                                                                                                                                                                    |
| 75.0                                                                                                                                | 0.05                                                                                                               | 0.016                                                                                                                                                                                                                     | 0.091                                                                                                                                                                                                                                                                                                                                     |
| 100.0                                                                                                                               | 0.04                                                                                                               | 0.004                                                                                                                                                                                                                     | 0.002                                                                                                                                                                                                                                                                                                                                     |
| 125.0                                                                                                                               | 0.02                                                                                                               | 0.003                                                                                                                                                                                                                     | 0.008                                                                                                                                                                                                                                                                                                                                     |
| 150.0                                                                                                                               | -0.08                                                                                                              | -0.007                                                                                                                                                                                                                    | 0.005                                                                                                                                                                                                                                                                                                                                     |
| 200.0                                                                                                                               | -0.04                                                                                                              | -0.004                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                                                                                                                                     |
| 250.0                                                                                                                               | 0.01                                                                                                               | 0.000                                                                                                                                                                                                                     | -0.005                                                                                                                                                                                                                                                                                                                                    |
| 299.4                                                                                                                               | 0.00                                                                                                               | -0.001                                                                                                                                                                                                                    | -0.010                                                                                                                                                                                                                                                                                                                                    |
| 500.0                                                                                                                               | 0.00                                                                                                               | 0.000                                                                                                                                                                                                                     | -0.007                                                                                                                                                                                                                                                                                                                                    |
| 722.2                                                                                                                               | 0.00                                                                                                               | -0.001                                                                                                                                                                                                                    | -0.002                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                     | 75.0<br>100.0<br>125.0<br>150.0<br>200.0<br>250.0<br>299.4<br>500.0                                                | 75.0       0.05         100.0       0.04         125.0       0.02         150.0       -0.08         200.0       -0.04         250.0       0.01         299.4       0.00         500.0       0.00         722.2       0.00 | 75.0       0.05       0.016         100.0       0.04       0.004         125.0       0.02       0.003         150.0       -0.08       -0.007         200.0       -0.04       -0.004         250.0       0.01       0.000         299.4       0.00       -0.001         500.0       0.00       0.000         722.2       0.00       -0.001 |

Table 7.1.2.-1(a) Data differences between TRITON buoys data and ship board CTD data after deployment

| Observation No. | Pressure | Temperature | Conductivety | Salinity |
|-----------------|----------|-------------|--------------|----------|
| 1.1.1           | (db)     | (degC)      | (S/m)        | (psu)    |
| 17004           | 1.5      | 0.01        | -0.004       | -0.026   |
| 17004           | 25.0     | 0.00        | 0.015        | 0.105    |
| 17004           | 50.0     | -0.02       | 0.005        | 0.046    |
| 17004           | 75.0     | -0.03       | 0.017        | 0.160    |
| 17004           | 100.0    | -0.02       | -0.315       | -2.713   |
| 17004           | 125.0    | 0.04        | 0.005        | 0.011    |
| 17004           | 150.0    | 0.00        | -0.001       | -0.007   |
| 17004           | 200.0    | -0.01       | -0.250       | -2.404   |
| 17004           | 250.0    | 0.00        | 0.000        | 0.005    |
| 17004           | 308.8    | 0.00        | 0.001        | 0.009    |
| 17004           | 500.0    | 0.00        | 0.000        | 0.001    |
| 17004           | 750.1    | 0.00        | 0.000        | 0.000    |
| 18005           | 1.5      | -0.29       | -0.053       | -0.164   |
| 18005           | 25.0     | 0.00        | -0.002       | -0.018   |
| 18005           | 50.0     | 0.00        | 0.011        | 0.075    |
| 18005           | 75.0     | -0.03       | -0.023       | -0.152   |
| 18005           | 100.0    | 0.02        | 0.005        | 0.026    |
| 18005           | 125.0    | -0.03       | 0.001        | 0.033    |
| 18005           | 150.0    | 0.00        | 0.000        | 0.000    |
| 18005           | 200.0    | 0.01        | 0.003        | 0.014    |
| 18005           | 250.0    | 0.01        | 0.001        | 0.002    |
| 18005           | 306.9    | 0.02        | 0.002        | 0.002    |
| 18005           | 500.0    | -0.01       | -0.001       | 0.001    |
| 18005           | 755.2    | 0.12        | 0.010        | -0.003   |

Table 7.1.2.-1(b) Data differences between TRITON buoys data and ship board CTD data before recovery

## 7.2 ADCP subsurface mooring

## (1) Personnel

| Yukio Masumoto    | (JAMSTEC): Principal Investigator (not on board) |
|-------------------|--------------------------------------------------|
| Kentaro Ando      | (JAMSTEC): not on board                          |
| Hideaki Hase      | (JAMSTEC): On board Investigator                 |
| Iwao Ueki         | (JAMSTEC): not on board                          |
| Tomohide Noguchi  | (MWJ): Operation leader                          |
| Koichi Takao      | (MWJ): Technical staff                           |
| Satoshi Ozawa     | (MWJ): Technical staff                           |
| Keisuke Matsumoto | (MWJ): Technical staff                           |
| Akinori Murata    | (MWJ): Technical staff                           |
| Toru Idai         | (MWJ): Technical staff                           |

## (2) Objectives

The purpose is to get the knowledge of physical process in the eastern equatorial Indian Ocean. Sub-surface currents were observed by using ADCP moorings along the equator. In this cruise (MR06-05), we deployed one sub-surface ADCP mooring at EQ-90E and recovered three ADCP moorings at EQ-90E/ 1.5N-80.5E/ 1.5S-80.5E.

## (3) Parameters

- · Current profiles
- · Echo intensity
- · Pressure, Temperature and Conductivity

## (4) Methods

Two instruments are mounted at the top float of the mooring. One is ADCP (Acoustic Doppler Current Profiler) to observe upper ocean layer currents from subsurface down to around 350m depths. The other is CTD to observe pressure, temperature and salinity for correction of sound speed and depth variability. Details of the instruments and their parameters are as follows:

1) ADCP

Self-Contained Broadband ADCP 150 kHz (RD Instruments) Distance to first bin : 8 m Pings per ensemble : 27 Time per ping : 6.66 seconds Bin length : 8.00 m Sampling Interval : 3600 seconds Recovered ADCP Serial Number : 1224 (Mooring No.061024-1.5N80.5E)

Serial Number : 1225 (Mooring No.061026-1.5S80.5E)

Self-Contained Work Horse Long Ranger ADCP 75 kHz (RD Instruments) Distance to first bin : 8 m

Pings per ensemble : 27 Time per ping : 6.66 seconds Bin length : 8.00 m Sampling Interval : 3600 seconds Deployed ADCP • Serial Number : 1248 (Mooring No.061203-0090E)

Recovered ADCP
• Serial Number : 1647 (Mooring No.050808-0090E)

## 2) CTD

SBE-16 (Sea Bird Electronics Inc.) Sampling Interval : 1800 seconds Recovered CTD

- Serial Number : 1275 (Mooring No.061024-1.5N80.5E)
- Serial Number : 1278 (Mooring No.061026-1.5S80.5E)

SBE-37 (Sea Bird Electronics Inc.) Sampling Interval : 1800 seconds Deployed CTD

• Serial Number : 1775 (Mooring No.061203-0090E)

Recovered CTD

• Serial Number : 1388 (Mooring No.050808-0090E)

## 3) Other instrument

Acoustic Releaser (BENTHOS,Inc.)

Deployed Acoustic Releaser

- Serial Number : 955 (Mooring No.061203-0090E)
- Serial Number : 663 (Mooring No.061203-0090E)

Recovered Acoustic Releaser

- Serial Number : 632 (Mooring No.061024-1.5N80.5E)
- Serial Number : 693 (Mooring No.061024-1.5N80.5E)
- Serial Number : 954 (Mooring No.061026-1.5S80.5E)
- Serial Number : 717 (Mooring No.061026-1.5S80.5E)
- Serial Number : 960 (Mooring No.050808-0090E)
- Serial Number : 961 (Mooring No.050808-0090E)

## (5) Deployment

The ADCP mooring deployed at EQ-90E was planned to play the ADCP at about 400m depths. After we dropped the anchor, we monitored the depth of the acoustic releaser.

• The position of the mooring No. 061203-0090E Date: 03 Dec. 2006 Lat: 00-00.37N Long: 90-03.79E Depth: 4410m

## (6) Recovery

We recovered three ADCP moorings. One was deployed on 8 Aug.2005 (MR05-03 Leg2), the other was deployed on 24 Oct. 2006 (MR06-05 Leg1) and the other was deployed on 26 Oct. 2006 (MR06-05 Leg1). After the recovery, we uploaded ADCP and CTD data into a computer, then raw data were converted into ASCII code. But the ADCP data recovered at 1.5N-80.5E was missing owing to the poor connection between batteries.

Results were shown in the figures in the following pages.

Fig.7.2-1 shows CTD pressure, temperature and salinity data (1.5N-80.5E).

Fig.7.2-2 shows the ADCP velocity data (zonal and meridional component / 1.5S-80.5E).

Fig.7.2-3 shows CTD pressure, temperature and salinity data (1.5S-80.5E).

Fig.7.2-4 shows the ADCP velocity data (zonal and meridional component / EQ-90E).

Fig.7.2-5 shows CTD pressure, temperature and salinity data (EQ-90E).

## (7) Data archive

The velocity data will be reconstructed using CTD depth data. The all data will be archived by the member of TOCS project at JAMSTEC.

All data will be submitted to DMO at JAMSTEC within 3 years after each recovery.

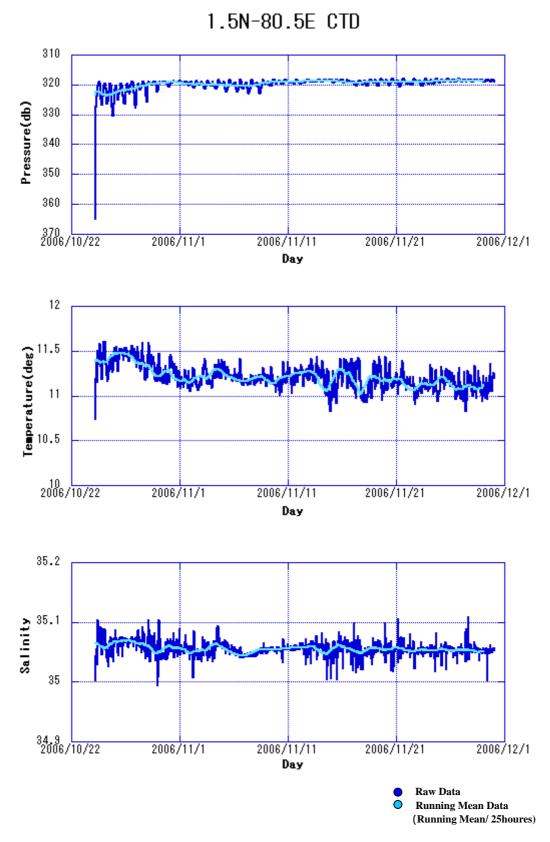



Fig.7.2-1 Time Series of pressure, temperature, salinity of obtained with CTD of 1.5N-80.5E mooring (2006/10/24-2006/11/30)

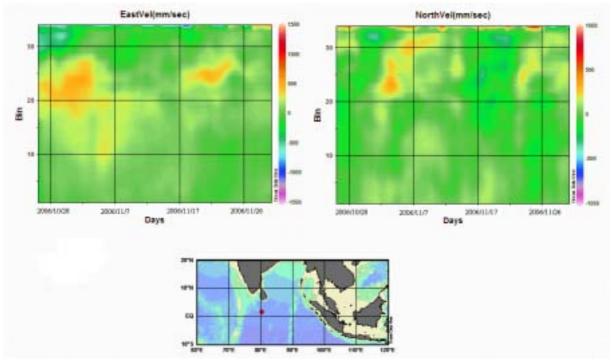



Fig.7.2-2 Time Series of zonal and meridional velocities of 1.5S-80.5E mooring (2006/10/26-2006/12/1)

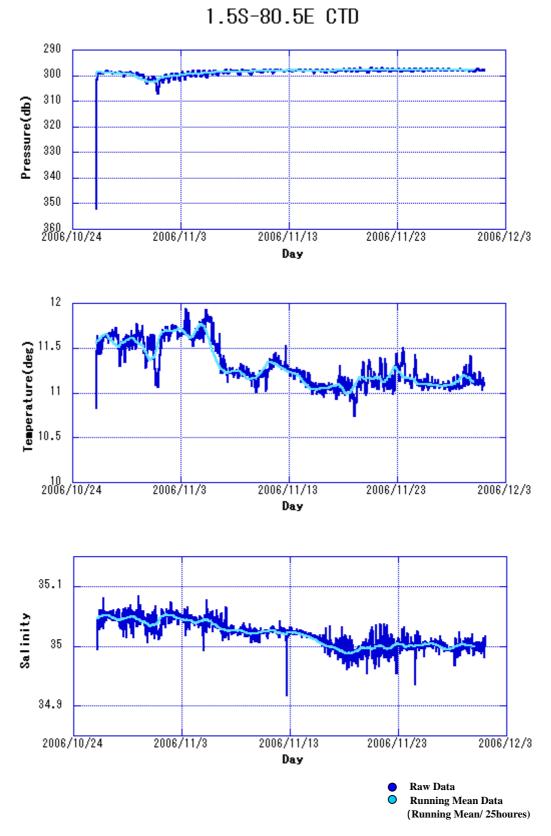



Fig.7.2-3 Time Series of pressure, temperature, salinity of obtained with CTD of 1.5S-80.5E mooring (2006/10/26-2006/12/1)

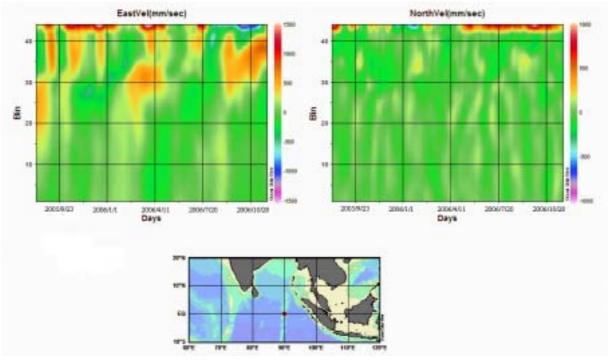



Fig.7.2-4 Time Series of zonal and meridional velocities of EQ-90E mooring (2005/8/9-2006/12/3)

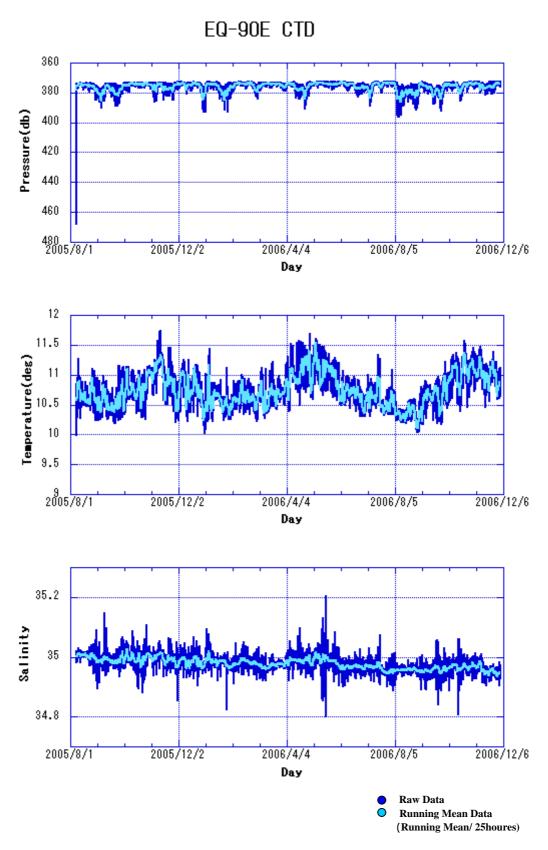



Fig.7.2-5 Time Series of pressure, temperature, salinity of obtained with CTD of EQ-90E mooring (2005/8/8-2006/12/3)

# 7.3 m-TRITON mooring operation

#### (1) Personnel

| Keisuke Mizuno    | (JAMSTEC): Principal Investigator (Not on board)      |
|-------------------|-------------------------------------------------------|
| Yoshifumi Kuroda  | (JAMSTEC): Engineer (On-board Principal Investigator) |
| Hideaki Hase      | (JAMSTEC): Oceanographer                              |
| Koichi Takao      | (MWJ): Technical Staff                                |
| Keisuke Matsumoto | (MWJ): Technical Staff                                |
| Tomohide Noguchi  | (MWJ): Technical Staff                                |
| Toru Idai         | (MWJ): Technical Staff                                |
| Masaki Furuhata   | (MWJ): Technical Staff                                |
| Masaki Yamada     | (MWJ): Technical Staff                                |

# (2) Objective

The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has developed new oceanic observation buoy which called m-TRITON buoy, for the purpose to understand the characteristics of the atmospheric and oceanic variability in the eastern Indian Ocean and to compose the Indian Ocean buoy array in the international effort.

The m-TRITON buoy was deployed at 1.5S-90E in this cruise to compare the data with TRITON buoy at same area.

# (3) Method

The m-TRITON buoy observes oceanic parameters and meteorological parameters as follows:

| Meteorological parameters: | wind speed, direction, air temperature, relative humidity, |
|----------------------------|------------------------------------------------------------|
|                            | shortwave radiation, precipitation.                        |
| Oceanic parameters:        | water temperature and conductivity                         |

Details of the instruments used on the m-TRITON buoy is summarized as follows:

# Oceanic sensors

1) CTD (Conductivity-Temperature-Depth meter, Sea Bird Electronics Inc.)

SBE-37 IM Micro CAT

| A/D cycles to average :           | 4               |
|-----------------------------------|-----------------|
| Sampling interval :               | 600sec          |
| Measurement range, Temperature :  | -5 ~ +35 deg-C  |
| Measurement range, Conductivity : | $0 \sim +7$ S/m |

| Measurement range, Pressure :                                                       | 0 ~ full scale range                           |  |
|-------------------------------------------------------------------------------------|------------------------------------------------|--|
| 2) TD (Temperature and Depth meter, Sea Bird                                        | Electronics Inc.)                              |  |
| SBE-39 IM                                                                           |                                                |  |
| Sampling interval :                                                                 | 600sec                                         |  |
| Measurement range, Temperature :                                                    | -5 ~ +35 deg-C                                 |  |
| Measurement range, Pressure :                                                       | 0 ~ full scale range                           |  |
|                                                                                     |                                                |  |
| Meteorological sensors                                                              |                                                |  |
| 1) Precipitation (R.M. Young Co.)                                                   |                                                |  |
| MODEL50202/50203                                                                    |                                                |  |
| Sampling interval :                                                                 | 600sec                                         |  |
| 2) Relative humidity/air temperature ( Rotronic                                     | Co.)                                           |  |
| MODEL MP101A                                                                        |                                                |  |
| Sampling interval :                                                                 | 600sec                                         |  |
| 3) Shortwave radiation (Eppley Co.)                                                 |                                                |  |
| MODEL PSP                                                                           |                                                |  |
| Sampling interval : 600sec                                                          |                                                |  |
| 4) Wind speed/direction (R.M. Young Co.)                                            |                                                |  |
| MODEL 05106                                                                         |                                                |  |
| Sampling interval :                                                                 | 600sec                                         |  |
| *)/                                                                                 | 1. 1 (h - ( 1 A /D ( A 1 /D': - ! + . 1) · · · |  |
| *Meteorological sensors were assembled that used A/D (Analougue/Digital) conversion |                                                |  |
| PCB (Print Cycle Board) made from MARITEC(Marine Technology Center)/JAMSTEC         |                                                |  |

| Data logger | and ARGOS | transmitter |
|-------------|-----------|-------------|
|             |           |             |

# 1) Data logger

I/O: RS485 has controlled of meteorological sensors.

RS232C has controlled of compass, GPS and Inductive modem.

# 2) ARGOS transmitter

Hourly averaged data are being transmitted through ARGOS transmitter.

(4) Results

The location of deployment is as follow:

The location of deployment

| Nominal location     | 1.5S, 90E |
|----------------------|-----------|
| ID number at JAMSTEC | 18501     |

| ARGOS PTT number        | 247  | 70         |        |
|-------------------------|------|------------|--------|
| ARGOS backup PTT number | 247  | 42         |        |
| Deployed date (UTC)     | 04 I | Dec. 2006  |        |
| Exact location          | 01   | 42.98N, 90 | 08.78E |
| Depth                   | 476  | 0 m        |        |

# (5) Data archive

Hourly averaged data were transmitted via ARGOS satellite data-transmission system in real time. These data will be archived at the JAMSTEC Yokosuka Headquarters. And the data will be distributed world wide through internet from the JAMSTEC web site (http://www.jamstec.go.jp/).

## 7.4 ARGO profiling float deployment

#### (1) Personnel

| Nobuyuki Shikama  | (JAMSTEC): Principal Investigator (not on board) |
|-------------------|--------------------------------------------------|
| Mizue Hirano      | (JAMSTEC): not on board                          |
| Tomohide Noguchi  | (MWJ): Technical Staff                           |
| Masatomo Hisazumi | (MWJ): Technical Staff                           |

#### (2) Objectives

The objective of deployment is to clarify the structure and temporal/spatial variability of water masses in the eastern Indian Ocean.

The profiling floats launched in this cruise obtain vertical profiles of temperature and salinity automatically every day. The data from the floats will enable us to understand the phenomenon mentioned above with time/spatial scales much smaller than those in the previous studies.

## (3) Parameters

- · water temperature, salinity, and pressure
- (4) Methods
  - Profiling float deployment

We launched one APEX float of JAMSTEC. This float equips an SBE41 CTD sensor manufactured by Sea-Bird Electronics Inc.

The floats usually drift at a depth of 1500 dbar (called the parking depth), rising up to the sea surface every ten days by increasing their volume and thus changing the buoyancy. During the ascent, they measure temperature, salinity, and pressure. They stay at the sea surface for approximately twelve hours, transmitting their positions and the CTD data to the land via the ARGOS system, and then return to the parking depth by decreasing volume. The details and the launch place of float are shown below.

| : APEX floats manufactured by Webb Research Ltd.  |
|---------------------------------------------------|
| : SBE41 manufactured by Sea-Bird Electronics Inc. |
| : 66078                                           |
| : 1500dbr                                         |
|                                                   |
|                                                   |
| : 2006/12/08 07:02(UTC)                           |
| : 2006/12/08 10:11(UTC)                           |
| : Lat: 04-56.55S Long: 095-01.71E                 |
|                                                   |

## (5) Data archive

All data acquired by the JAMSTEC floats through the ARGOS system is stored at JAMSTEC. The real-time data are provided to meteorological organizations via Global Telecommunication System (GTS) and utilized for analysis and forecasts of sea conditions.

## 7.5 Doppler radar and radiosonde observation

## 7.5.1 Doppler radar observation

| (1) Personnel      |                                  |
|--------------------|----------------------------------|
| Ryuichi SHIROOKA   | (JAMSTEC) Principal Investigator |
| Hiroyuki YAMADA    | (JAMSTEC)                        |
| Ayako SEIKI        | (JAMSTEC)                        |
| Tomoki MIYAKAWA    | (JAMSTEC/University of Tokyo)    |
| Souichiro SUEYOSHI | (GODI)                           |
| Norio NAGAHAMA     | (GODI)                           |
| Ryo OHYAMA         | (GODI)                           |

#### (2) Objective

The Doppler radar is operated to obtain detailed spatial and temporal distribution of rainfall amount, and structure of precipitating cloud systems.

## (3) Methods

The hardware specification of this shipboard Doppler radar (RC-52B, manufactured by Mitsubishi Electric Co. Ltd., Japan) is:

| Frequency:                | 5290 MHz                      |
|---------------------------|-------------------------------|
| Beam Width:               | better than 1.5 degree        |
| Output Power:             | 250 kW (Peak Power)           |
| Signal Processor:         | RVP-7 (Sigmet Inc., USA)      |
| Inertial Navigation Unit: | PHINS (IXSEA SAS, France)     |
| Application Software:     | IRIS/Open (Sigment Inc., USA) |

The observation is performed continuously from 2300UTC, 28 November 2006, to 0830 UTC, 10 December 2006. During the observation period, the "surveillance" PPI (Plan Position Indicator) at one elevation angle with Intensity mode (300 km range for reflectivity) had been obtained every 30 minutes. The "volume scan" (consists of PPIs for 21 elevations) with Doppler-mode (160 km range for reflectivity and Doppler velocity) had been obtained every 10 minutes. In addition, RHI (Range Height Indicator) scans were operated to obtain detailed vertical cross sections with Doppler mode. The Doppler velocity in the volume scans is unfolded automatically by dual-PRF unfolding algorithm.

#### (4) Preliminary Results

The surveillance PPI reflectivity every 24 hours are shown in Fig. 7.5.1-1

## (5) Data Archive

The inventory information of the Doppler radar data will be submitted to JAMSTEC DMD. The original data will be archived at and available from R. Shirooka of JAMSTEC.

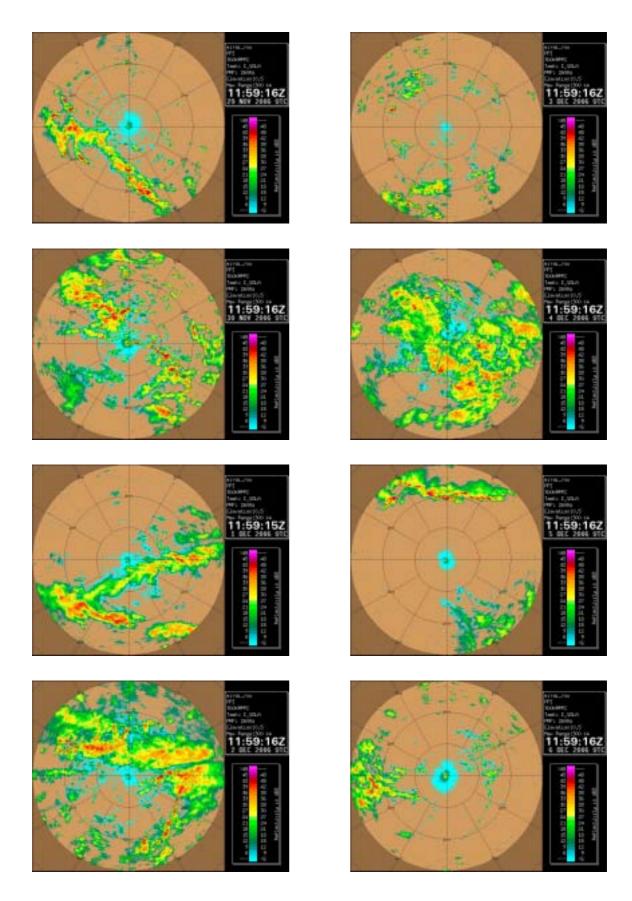
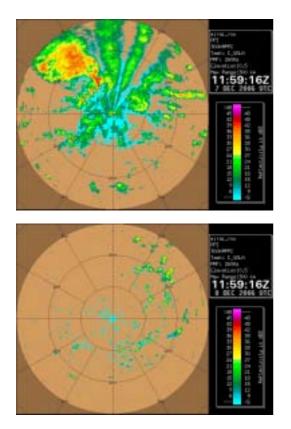




Fig. 7.5.1-1 Doppler radar reflectivity 300km in radius during MR06-05 Leg2.



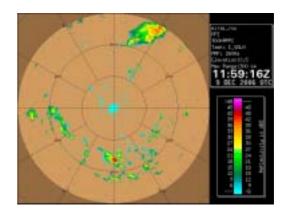



Fig. 7.5.1-1 (continued)

## 7.5.2 Radiosonde observation

## (1) Personnel

| Ryuichi SHIROOKA   | (JAMSTEC)  | Principal Investigator |
|--------------------|------------|------------------------|
| Hiroyuki YAMADA    | (JAMSTEC)  |                        |
| Ayako SEIKI        | (JAMSTEC)  |                        |
| Tomoki MIYAKAWA    | (JAMSTEC/U | niversity of Tokyo)    |
| Souichiro SUEYOSHI | (GODI)     |                        |
| Norio NAGAHAMA     | (GODI)     |                        |
| Ryo OHYAMA         | (GODI)     |                        |

# (2) Objective

Atmospheric soundings of temperature, humidity, and wind speed/direction.

## (3) Method

Atmospheric sounding by radiosonde was carried out every 6 hours from November 29, 2006 through December 10, 2006. In total, 52 soundings were carried out (Table 7.5.2-1). The main system consists of processor (Vaisala, DigiCORA III), GPS antenna (GA20), UHF antenna (RB21), balloon launcher (ASAP), and GPS radiosonde sensor (RS92-SGP).

## (4) Results

Figure 7.5.2-1 shows vertical profiles of temperature and dew point temperature on the thermodynamic chart with wind profiles.

# (5) Data Archive

Data were sent to the world meteorological community via Global Telecommunication System through the Japan Meteorological Agency, immediately after the each observation. Raw data is recorded as ASCII format every 2 seconds during ascent. These raw datasets will be submitted to JAMSTEC Data Management Office. Corrected and projected onto every 5hPa level datasets are also available from R. Shirooka of JAMSTEC.

| Date & Time | Pos     | ition   |        | Surfa | ice Da | ita |      | Max.  | height | Clou | d                 |
|-------------|---------|---------|--------|-------|--------|-----|------|-------|--------|------|-------------------|
| YYMMDDHH    | degN    | degE    | hPa    | degC  | %      | deg | m/s  | m     | hPa    | Amo  | ount / Type       |
| 06112900    | 2.7689  | 77.2023 | 1006.4 | 27.7  | 79     | 83  | 3.1  | 22901 | 34.3   | 1    | Unknown           |
| 06112906    | 2.3553  | 78.3355 | 1008.5 | 28.7  | 77     | 10  | 3.6  | 23075 | 33.5   | 8    | Cu, Ac, As        |
| 06112912    | 2.1126  | 78.9847 | 1006.1 | 28.1  | 78     | 28  | 5.0  | 21919 | 40.1   | 5    | Cu, Cb, As, Ci    |
| 06112918    | 1.8082  | 79.6186 | 1008.7 | 27.7  | 80     | 0   | 4.0  | 24424 | 27.0   | 4    | Cu, Sc            |
| 06113000    | 1.5734  | 80.2008 | 1006.3 | 27.8  | 85     | 98  | 4.7  | 24026 | 28.6   | 8    | Unknown           |
| 06113006    | 1.4763  | 80.3915 | 1009.5 | 27.5  | 85     | 237 | 6.2  | 25259 | 23.7   | 8    | Cu, Cb, Ac, As    |
| 06113012    | 1.2649  | 80.5428 | 1006.3 | 26.8  | 89     | 270 | 11.2 | 20042 | 54.8   | 10   | Cu, Cb            |
| 06113018    | 0.0603  | 80.4398 | 1009.7 | 28.0  | 82     | 338 | 3.3  | 18198 | 75.4   | 10   | Cu, As, Sc        |
| 06120100    | -1.1390 | 80.3697 | 1007.2 | 26.8  | 84     | 327 | 6.5  | 23132 | 33.1   | 7    | Cu, As, Sc        |
| 06120106    | -1.4924 | 80.3487 | 1008.9 | 28.3  | 76     | 316 | 11.4 | 26546 | 19.5   | 8    | Cu, Ac            |
| 06120112    | -1.4021 | 81.2029 | 1006.1 | 27.6  | 80     | 289 | 4.8  | 21359 | 44.0   | 10   | Cu, Ac, As, Sc    |
| 06120118    | -1.1618 | 82.7742 | 1008.9 | 25.2  | 91     | 204 | 2.5  | 5152  | 547.7  | 10   | As                |
| 06120200    | -0.8819 | 84.3633 | 1006.7 | 26.7  | 86     | 231 | 4.2  | 25944 | 21.2   | 9    | Cu, Ac, Sc        |
| 06120206    | -0.6589 | 85.8589 | 1008.2 | 26.6  | 86     | 200 | 4.5  | 25662 | 22.2   | 9    | Cu, Cb, Ac, As, N |
| 06120212    | -0.3958 | 87.3532 | 1006.7 | 27.3  | 85     | 202 | 6.0  | 20187 | 53.4   | 10   | Cu, Ac, As        |
| 06120218    | -0.1571 | 88.5857 | 1009.5 | 26.0  | 89     | 158 | 5.7  | 21278 | 44.8   | 10   | Cu, As, Sc        |
| 06120300    | 0.0253  | 89.7314 | 1006.3 | 26.4  | 85     | 179 | 5.1  | 24143 | 28.2   | 8    | Cu, Ac, Ns        |
| 06120306    | 0.0203  | 90.0883 | 1008.4 | 29.1  | 75     | 87  | 2.6  | 25853 | 21.6   | 7    | Cu, Ac            |
| 06120312    | 0.0513  | 89.9256 | 1006.6 | 28.1  | 77     | 59  | 2.9  | 23565 | 30.9   | 10   | Cu, Ac, As        |
| 06120318    | -0.8967 | 90.0770 | 1008.5 | 27.6  | 86     | 23  | 3.2  | 23761 | 30.0   | 9    | Cu, Cb, Ac        |
| 06120400    | -1.7315 | 90.0454 | 1007.9 | 24.5  | 94     | 32  | 2.6  | 21154 | 45.7   | 10   | Ns                |
| 06120406    | -1.7170 | 90.1427 | 1008.8 | 27.3  | 84     | 242 | 3.7  | 22347 | 37.7   | 9    | Cu, Cb, As        |
| 06120412    | -1.6548 | 90.0083 | 1007.6 | 25.3  | 90     | 302 | 9.3  | 19804 | 57.3   | 10   | Ns                |
| 06120418    | -1.6439 | 90.0923 | 1009.6 | 26.9  | 83     | 293 | 9.1  | 22124 | 39.1   | 10   | Cb, As            |
| 06120500    | -1.5971 | 90.1162 | 1008.9 | 24.3  | 98     | 346 | 1.8  | 4978  | 558.7  | 10   | Ns                |
| 06120503    | -1.5550 | 90.1203 | 1010.9 | 24.4  | 94     | 242 | 6.2  | 22191 | 38.7   | 10   | Ns                |
| 06120506    | -1.5861 | 90.0911 | 1008.5 | 25.4  | 94     | 239 | 5.3  | 23453 | 31.5   | 10   | Cu, As, Sc        |
| 06120509    | -1.6433 | 90.0111 | 1006.6 | 27.0  | 77     | 214 | 5.5  | 24670 | 25.7   | 8    | Cu, Ac            |
| 06120512    | -1.6425 | 90.0281 | 1006.3 | 27.3  | 78     | 240 | 5.9  | 22984 | 33.8   | 5    | Ac, As            |
| 06120515    | -1.6599 | 90.0259 | 1008.9 | 27.5  | 80     | 228 | 5.2  | 23327 | 32.1   | 9    | Ac, As            |
| 06120518    | -1.6896 | 90.0075 | 1008.8 | 27.8  | 76     | 217 | 4.9  | 23877 | 29.3   | 4    | Ac                |
| 06120521    | -1.6909 | 90.0082 | 1007.3 | 27.5  | 81     | 255 | 3.5  | 23989 | 28.7   | 4    | Cu, Ac            |
|             |         |         |        |       |        |     |      |       |        |      |                   |

| Table 7.5.2-1 Radiosonde launch log. |  |
|--------------------------------------|--|
|--------------------------------------|--|

| 06120600 | -1.6692 | 90.0106 | 1006.8 | 27.3 | 82 | 254 | 3.1  | 25275 | 23.6 | 2  | Cu, Ac         |
|----------|---------|---------|--------|------|----|-----|------|-------|------|----|----------------|
| 06120603 | -1.6537 | 89.9896 | 1009.2 | 27.2 | 84 | 301 | 5.4  | 24067 | 28.8 | 6  | Cu, Ac         |
| 06120606 | -1.6532 | 90.0006 | 1008.6 | 28.5 | 79 | 271 | 5.7  | 21359 | 44.2 | 4  | Cu, Cb, Ci     |
| 06120612 | -2.3699 | 91.0605 | 1005.9 | 27.6 | 82 | 279 | 7.8  | 23922 | 28.9 | 3  | Cu, Cb, Cc, Cs |
| 06120618 | -3.2484 | 92.3659 | 1008.1 | 27.0 | 88 | 279 | 7.4  | 22670 | 35.5 | 5  | Cb, As         |
| 06120700 | -4.1504 | 93.6640 | 1007.3 | 25.9 | 91 | 249 | 11.8 | 23198 | 32.5 | 10 | Ns             |
| 06120706 | -5.0165 | 94.9506 | 1008.6 | 27.4 | 83 | 252 | 6.2  | 22866 | 34.4 | 10 | Cu, Sc, Ns     |
| 06120712 | -4.9664 | 94.9886 | 1007.0 | 27.1 | 88 | 340 | 8.1  | 21748 | 41.1 | 10 | Cu, Sc, Ns     |
| 06120718 | -4.9703 | 95.0218 | 1007.8 | 27.0 | 87 | 268 | 10.7 | 23912 | 29.0 | 3  | Cu, Ac         |
| 06120800 | -4.9476 | 95.0094 | 1006.8 | 27.4 | 85 | 249 | 6.9  | 24819 | 25.2 | 4  | Cu, Ac, Ci     |
| 06120806 | -4.9396 | 95.0136 | 1007.6 | 29.4 | 74 | 270 | 3.4  | 25596 | 22.4 | 3  | Cu, Ci         |
| 06120812 | -4.7703 | 95.0239 | 1006.1 | 27.8 | 82 | 325 | 2.7  | 23294 | 32.0 | 5  | Cu, Sc, Ci     |
| 06120818 | -3.5281 | 94.9713 | 1008.5 | 27.5 | 83 | 313 | 1.7  | 20679 | 49.3 | 1  | Cu, Ac         |
| 06120900 | -2.2763 | 94.9015 | 1007.6 | 27.4 | 84 | 215 | 2.7  | 24407 | 26.9 | 5  | Cu, Cb, As     |
| 06120906 | -1.2478 | 94.4875 | 1008.5 | 28.0 | 80 | 270 | 2.4  | 23420 | 31.5 | 3  | Cu, Cb, Ci, Cs |
| 06120912 | -0.5542 | 93.6362 | 1006.6 | 27.7 | 81 | 303 | 2.8  | 24580 | 26.1 | 5  | Cu, As, Sc, Ci |
| 06120918 | 0.2354  | 92.9164 | 1008.8 | 27.5 | 83 | 320 | 2.2  | 24249 | 27.7 | 2  | Cu, Ac         |
| 06121000 | 1.1855  | 92.2602 | 1008.0 | 27.6 | 82 | 333 | 5.6  | 24931 | 24.8 | 4  | Cu, Cb, Cs     |
| 06121006 | 2.3275  | 91.9164 | 1008.7 | 28.5 | 80 | 295 | 4.1  | 24287 | 27.3 | 4  | Cu, Ac, Ci     |
| 06121012 | 3.2849  | 91.9159 | 1006.2 | 28.1 | 80 | 287 | 4.9  | 22396 | 37.1 | 4  | Cu, Cs, Ci     |
|          |         |         |        |      |    |     |      |       |      |    |                |

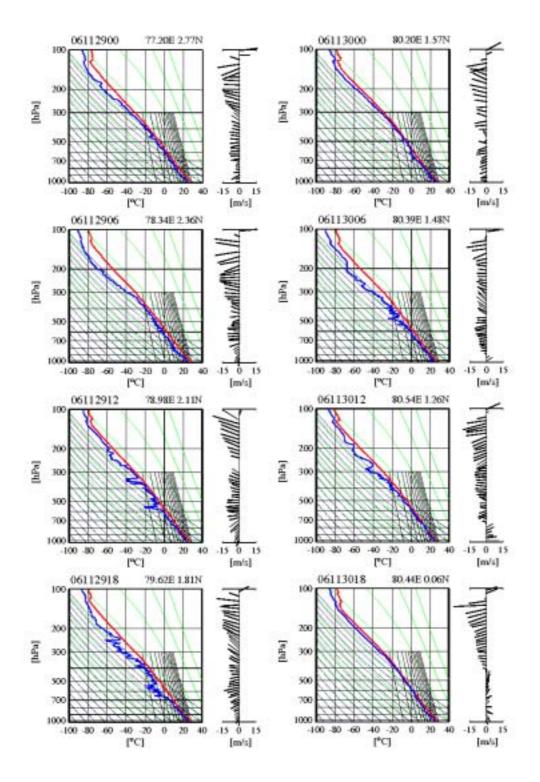



Fig. 7.5.2-1 Thermodynamic chart during MR06-05 Leg2.

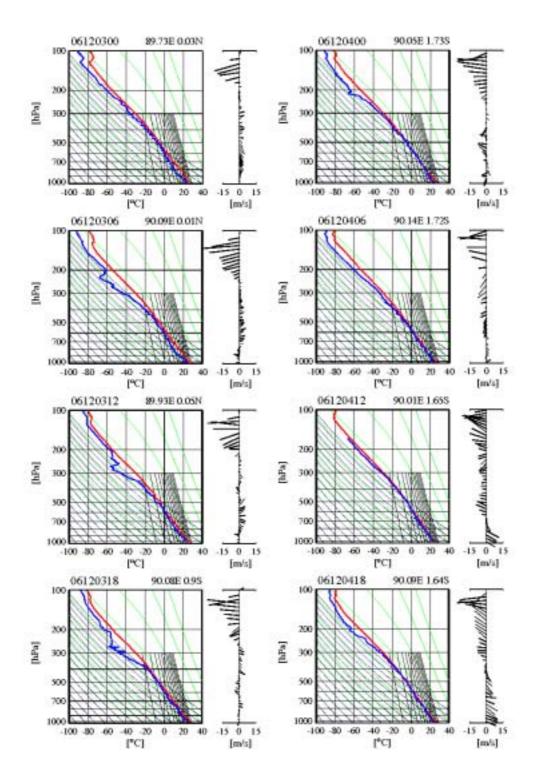



Fig. 7.5.2-1 (continued)

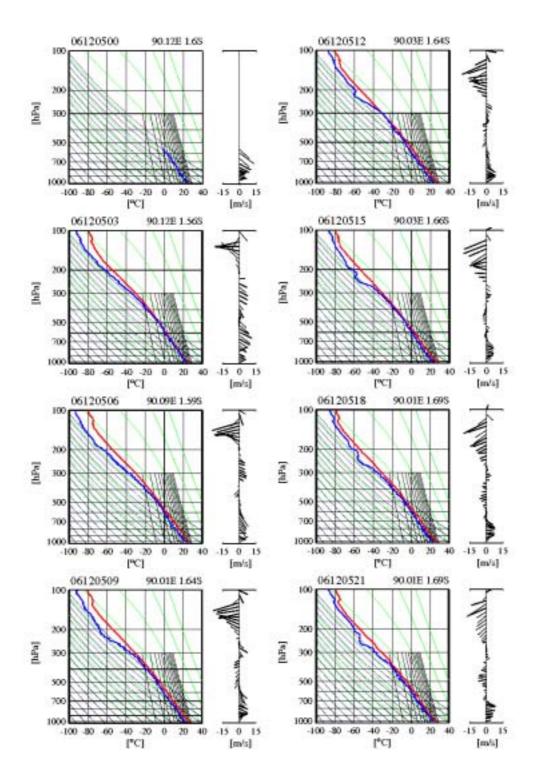



Fig. 7.5.2-1 (continued)

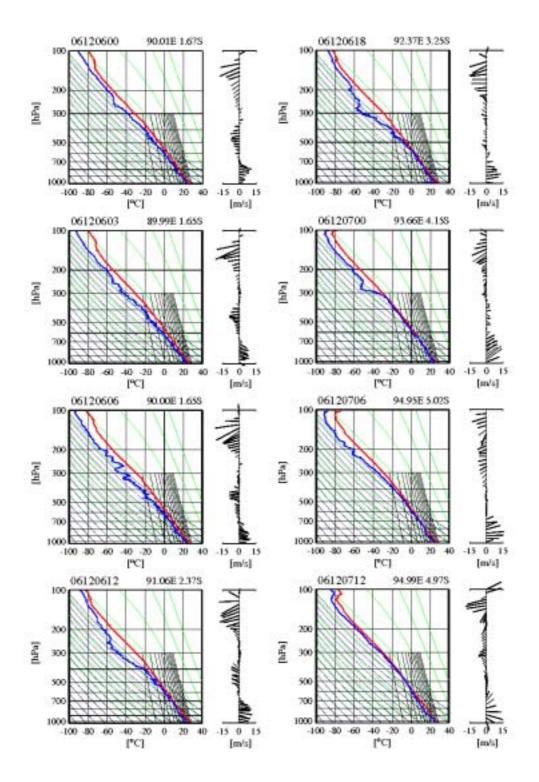



Fig. 7.5.2-1 (continued)

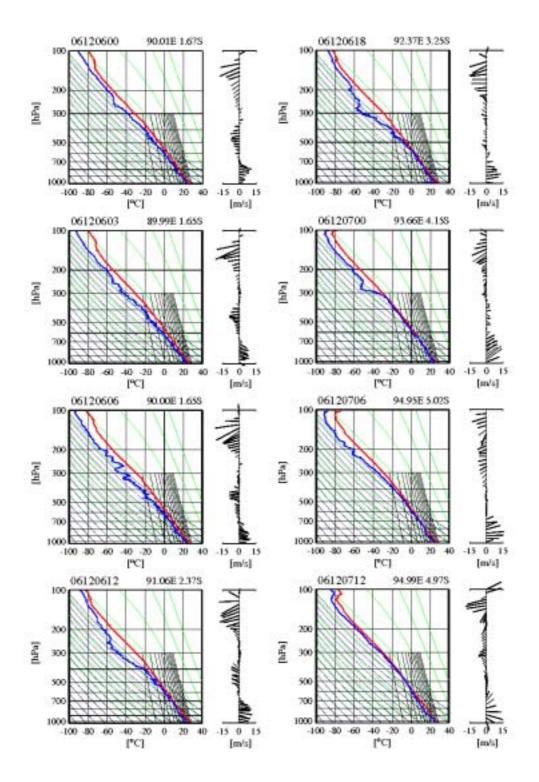



Fig. 7.5.2-1 (continued)

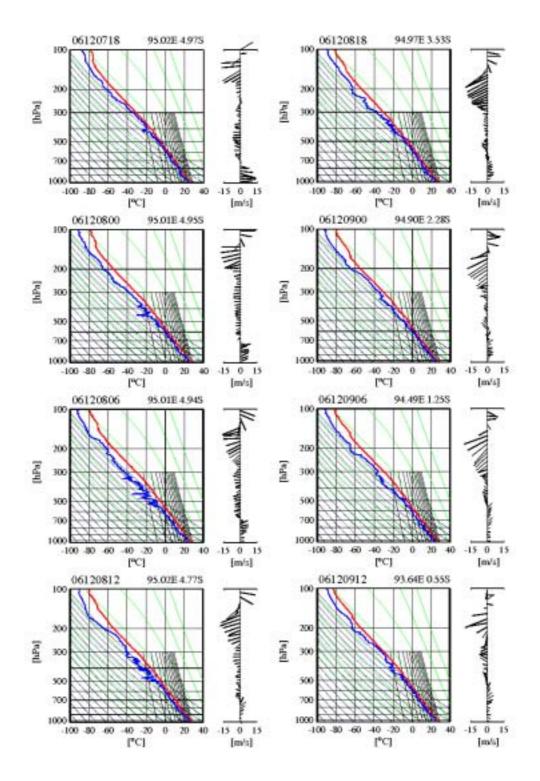



Fig. 7.5.2-1 (continued)

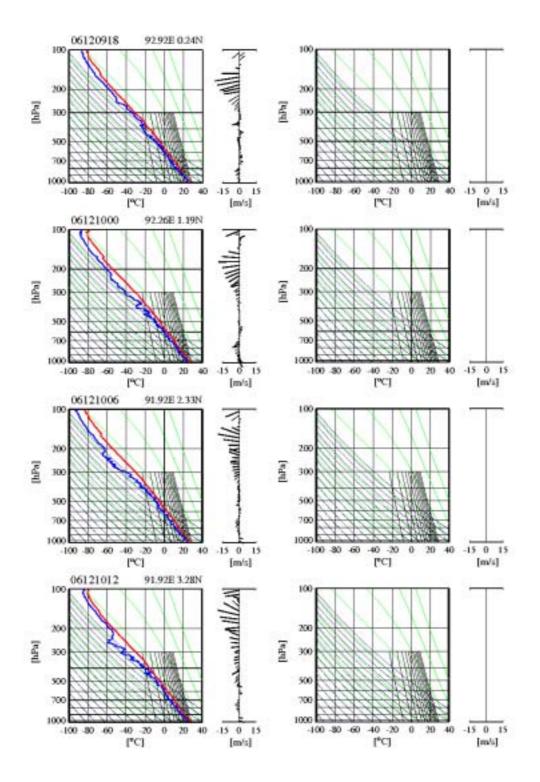



Fig. 7.5.2-1 (continued)

#### 7.6 Lidar observations of clouds and aerosols

#### (1) Personnel

Nobuo Sugimoto, Ichiro Matsui, Atsushi Shimizu (National Institute for Environmental Studies, not on board), lidar operation was supported by Mr. Kinoshita (Chiba University).

#### (2) Objectives

Objectives of the observations in this cruise is to study distribution and optical characteristics of ice/water clouds and marine aerosols using a two-wavelength lidar.

#### (3) Measured parameters

- Vertical profiles of backscattering coefficient at 532 nm
- Vertical profiles of backscattering coefficient at 1064 nm
- Depolarization ratio at 532 nm

## (4) Method

Vertical profiles of aerosols and clouds were measured with a two-wavelength lidar. The lidar employs a Nd:YAG laser as a light source which generates the fundamental output at 1064 nm and the second harmonic at 532 nm. Transmitted laser energy is typically 30 mJ per pulse at both of 1064 and 532 nm. The pulse repetition rate is 10 Hz. The receiver telescope has a diameter of 20 cm. The receiver has three detection channels to receive the lidar signals at 1064 nm and the parallel and perpendicular polarization components at 532 nm. An analog-mode avalanche photo diode (APD) is used as a detector for 1064 nm, and photomultiplier tubes (PMTs) are used for 532 nm. The detected signals are recorded with a transient recorder and stored on a hard disk with a computer. The lidar system was installed in the radiosonde container on the compass deck. The container has a glass window on the roof, and the lidar was operated continuously regardless of weather. Every 10 seconds vertical profiles of three channel are recorded.

#### (5) Results

Full lidar raw data is still under data processing and analysis. So we show here only sample vertical profiles of backscattering intensity, Figure 1 shows an atmospheric structure revealed by lidar on December 1, 2006. There were two cloud layers around 8 km and 12.5 km. Similar profiles are obtained every 15 minutes, and three dimensional structure of atmospheric scatterers (clouds and

aerosols) are revealed in whole troposphere.

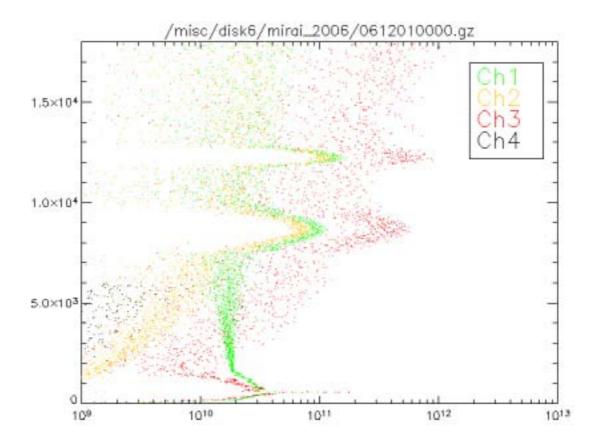



Figure 1: Vertical profiles of backscattering intensity at 532 nm parallel (green), 532 nm perpendicular (yellow), 1064 nm (red) on December 1, 2006. Black indicates signal from near field telescope (532nm).

(6) Data archive

- raw data

lidar signal at 532 nm

lidar signal at 1064 nm

depolarization ratio at 532 nm

temporal resolution 10 sec/ vertical resolution 6 m

data period : November 28 2006 - December 13, 2006

- processed data

cloud base height, apparent cloud top height

phase of clouds (ice/water)

cloud fraction boundary layer height (aerosol layer upper boundary height) backscatter coefficient of aerosols particle depolarization ratio of aerosols

# 7.7 Rain and Water Vapor sampling for Stable Isotope Measurement

## (1) Personnel

| Naoyuki Kurita    | (JAMSTEC)    | Principal Investigator |
|-------------------|--------------|------------------------|
| Kimpei Ichiyanagi | (JAMSTEC)    |                        |
| Mayumi Horikawa   | (Nagoya Univ | versity)               |

# (2) Objective

Stable isotopes in water (HDO and  $H_2^{18}O$ ) are powerful tool to study of the moisture origin of precipitation associated with MJO. Sampling of rainwater and atmospheric moisture was performed for stable isotope analyses throughout the MR06-05 Leg2 cruise from Maldives on November 28, 2006 to Singapole on December 13, 2006.

## (3) Method

Following observation was carried out throughout this cruise

- Atmospheric moisture sampling:

Water vapor was sampled at the two heights above sea level, namely foremast and mainmast height. The cryogenic method that air was drawn at the 3L/min for about 6 hour from the intake point through a glass trap cooled by radiator around -100 was used for water vapor sampling

- Measurement of the mixing ratio at the sampling levels.

The 10 min average of air temperature and relative humidity (Vaisala Co. Ltd., HMP45) was measured at the air intake point. The mixing ratio of each level was determined in each level using temerature and relative humidity.

# - Rainwater sampling

Precipitation sampling was collected every 3 hours with auto-precipitation sampler developed by JAMSTEC (Masinax Co., Ltd., MAS-UK150-1). All precipitation during the period falls through a funnel and pooled in the rain collector, then 10 ml of the water is mechanically transferred to an airtight sample container.

# (4) Results

The sampling coordinates and meteorological condition for all water vapor samples are summarized in Table 7.7-1 for foremast (49 samples) and Table 7.7-2 for mainmast (49 samples). The rainfall samples data (24 samples) is summarized in Table 7.7-3. It includes the sampling coordination and rainfall amount. As for the meteorological data, temporal variation of temperature, relative humidity, and mixing ratio are shown in Figure 7.7-1.

## (5) Data archive

These raw data obtained during this cruise will be submitted to JAMSTEC Data Management Office. Analyzed stable isotope data (HDO and  $H_2^{18}O$ ) are also available from N. Kurita of JAMSTEC.

| Table 7.7-1 Summary | of all water | vapor data | collected a | at the fore | mast height. |
|---------------------|--------------|------------|-------------|-------------|--------------|
| 2                   |              | 1          |             |             | 0            |

| 10 | Date     | Time UTC | Latitude N | Longitude E | Log Speed | Temp. | RH % | Mixing ratio g/Kg | Sample g |
|----|----------|----------|------------|-------------|-----------|-------|------|-------------------|----------|
| 1  | 20061129 | 0:00     | 2.525      | 77.855      | 11.43     | 28.8  | 0.71 | 17.703            | 22.5     |
| 2  | 20061129 | 6:00     | 2.212      | 78.718      | 7.93      | 28.1  | 0.76 | 18.349            | 22.9     |
| 3  | 20061129 | 12:00    | 1.908      | 79.378      | 6.83      | 28.1  | 0.77 | 18.544            | 23.4     |
| 4  | 20061129 | 18:00    | 1.664      | 79.973      | 6.16      | 27.5  | 0.8  | 18.772            | 23.9     |
| 5  | 20061130 | 0:00     | 1.5        | 80.38       | 3.08      | 26.8  | 0.83 | 18.607            | 23.4     |
| 6  | 20061130 | 6:00     | 1.47       | 80.538      | 5.4       | 27.2  | 0.81 | 18.539            | 23.      |
| 7  | 20061130 | 12:00    | 0.52       | 80.495      | 12.18     | 27.6  | 0.79 | 18.602            | 24.      |
| 8  | 20061130 | 18:00    | -0.674     | 80.415      | 11.95     | 26.4  | 0.8  | 17.494            | 21.      |
| 9  | 20061201 | 0:00     | -1.057     | 80.386      | 7.74      | 27.2  | 0.78 | 17.778            | 22.      |
| 10 | 20061201 | 6:00     | -1.467     | 80.77       | 10.32     | 28.3  | 0.73 | 17.656            | 22.      |
| 11 | 20061201 | 12:00    | -1.241     | 82.237      | 15.92     | 26.6  | 0.82 | 18.029            | 24.      |
| 12 | 20061201 | 18:00    | -0.971     | 83.778      | 16.34     | 26.6  | 0.8  | 17.67             | 21.      |
| 13 | 20061202 | 0:00     | -0.832     | 84.638      | 15.93     | 27.2  | 0.78 | 17.952            | 22.      |
| 14 | 20061202 | 6:00     | -0.493     | 86.791      | 14.9      | 27.8  | 0.75 | 17.89             | 22.      |
| 15 | 20061202 | 12:00    | -0.23      | 88.12       | 12.61     | 26.8  | 0.8  | 17.774            | 2        |
| 16 | 20061202 | 18:00    | -0.026     | 89.288      | 11.76     | 26.3  | 0.81 | 17.702            | 2        |
| 17 | 20061203 | 0:00     | 0.022      | 90.032      | 3.92      | 27.9  | 0.75 | 17.839            | 22       |
| 18 | 20061203 | 6:00     | 0.036      | 89.969      | 2.53      | 28.5  | 0.72 | 17.909            | 22       |
| 19 | 20061203 | 12:00    | -0.516     | 90.033      | 10.43     | 28    | 0.76 | 18.301            | 23       |
| 20 | 20061203 | 18:00    | -1.502     | 90.109      | 9.91      | 27.4  | 0.81 | 18.681            | 23       |
| 21 | 20061204 | 0:00     | -1.697     | 90.167      | 3.34      | 27.1  | 0.8  | 18.224            | 23.      |
| 22 | 20061204 | 6:00     | -1.667     | 90.08       | 3.89      | 25.2  | 0.88 | 17.927            | 22.      |
| 23 | 20061204 | 12:00    | -1.635     | 90.073      | 1.34      | 26.5  | 0.82 | 18.012            | 23       |
| 24 | 20061204 | 18:00    | -1.608     | 90.094      | 0.79      | 26.1  | 0.83 | 17.834            | 23       |
| 25 | 20061205 | 0:00     | -1.576     | 90.112      | 1.53      | 24.6  | 0.9  | 17.594            | 22       |
| 26 | 20061205 | 6:00     | -1.64      | 90.021      | 1.45      | 27.7  | 0.74 | 17.457            | 23.      |
| 27 | 20061205 | 12:00    | -1.662     | 90.023      | 1.45      | 27.7  | 0.75 | 17.548            | 2        |
| 28 | 20061205 | 18:00    | -1.68      | 90.01       | 0.83      | 27.6  | 0.75 | 17.619            | 22.      |
| 29 | 20061206 | 0:00     | -1.654     | 89.995      | 1.3       | 28.7  | 0.73 | 18.261            | 23       |
| 30 | 20061206 | 6:00     | -2.038     | 90.579      | 14.82     | 27.7  | 0.79 | 18.623            | 23.      |
| 31 | 20061206 | 12:00    | -2.907     | 91.865      | 15.86     | 27.6  | 0.78 | 18.268            | 22       |
| 32 | 20061206 | 18:00    | -3.785     | 93.161      | 15.88     | 26.9  | 0.82 | 18.341            | 23       |
| 33 | 20061207 | 0:00     | -4.666     | 94.457      | 14.56     | 28    | 0.76 | 18.218            | 23       |
| 34 | 20061207 | 6:00     | -5.009     | 95.004      | 2.03      | 27.6  | 0.78 | 18.34             | 23.      |

| 35 | 20061207 | 12:00 | -4.968 | 95.027 | 2.81  | 27   | 0.83 | 18.716 | 23.9 |
|----|----------|-------|--------|--------|-------|------|------|--------|------|
| 36 | 20061207 | 18:00 | -4.956 | 95.031 | 0.82  | 27.4 | 0.79 | 18.322 | 22.9 |
| 37 | 20061208 | 0:00  | -4.943 | 94.991 | 1.94  | 29.3 | 0.72 | 18.478 | 23.7 |
| 38 | 20061208 | 6:00  | -4.895 | 95.028 | 3.57  | 29.8 | 0.7  | 18.605 | 23.1 |
| 39 | 20061208 | 12:00 | -3.964 | 95.002 | 12.42 | 27.7 | 0.79 | 18.599 | 24.8 |
| 40 | 20061208 | 18:00 | -2.726 | 94.927 | 12.52 | 27.4 | 0.78 | 18.178 | 21.5 |
| 41 | 20061209 | 0:00  | -1.592 | 94.745 | 12.06 | 28.8 | 0.73 | 18.297 | 23.1 |
| 42 | 20061209 | 6:00  | -0.838 | 93.961 | 11.33 | 28.7 | 0.73 | 18.277 | 22.1 |
| 43 | 20061209 | 12:00 | -0.081 | 93.214 | 11.05 | 28   | 0.76 | 18.082 | 23.5 |
| 44 | 20061209 | 18:00 | 0.831  | 92.513 | 11.79 | 27.7 | 0.77 | 18.237 | 23.9 |
| 45 | 20061210 | 0:00  | 1.841  | 91.973 | 12.55 | 29   | 0.73 | 18.629 | 22.4 |
| 46 | 20061210 | 6:00  | 2.954  | 91.922 | 9.85  | 28.9 | 0.73 | 18.598 | 23.4 |
|    |          |       |        |        |       |      |      |        |      |

Table 7.7-2 same as Table 7.7-1 but mainmast height

| No | Date     | Time UTC | Latitude N | Longitude E | Log Speed | Temp. | RH % | Mixing ratio g/Kg | Sample g |
|----|----------|----------|------------|-------------|-----------|-------|------|-------------------|----------|
| 1  | 20061129 | 0:00     | 2.522      | 77.864      | 11.47     | 28.2  | 0.73 | 17.658            | 21.7     |
| 2  | 20061129 | 6:00     | 2.211      | 78.72       | 7.92      | 27.7  | 0.77 | 18.193            | 23.6     |
| 3  | 20061129 | 12:00    | 1.902      | 79.391      | 6.8       | 27.8  | 0.78 | 18.466            | 23.3     |
| 4  | 20061129 | 18:00    | 1.659      | 79.984      | 6.13      | 27.2  | 0.82 | 18.695            | 23.6     |
| 5  | 20061130 | 0:00     | 1.5        | 80.384      | 3.22      | 26.4  | 0.85 | 18.442            | 22.8     |
| 6  | 20061130 | 6:00     | 1.459      | 80.539      | 5.45      | 26.6  | 0.83 | 18.334            | 23.4     |
| 7  | 20061130 | 12:00    | 0.512      | 80.493      | 12.17     | 27.3  | 0.8  | 18.476            | 23.2     |
| 8  | 20061130 | 18:00    | -0.67      | 80.416      | 11.86     | 26.1  | 0.8  | 17.236            | 22.7     |
| 9  | 20061201 | 0:00     | -1.451     | 80.355      | 3.3       | 27.4  | 0.77 | 17.794            | 21.9     |
| 10 | 20061201 | 6:00     | -1.47      | 80.749      | 10.24     | 27.6  | 0.75 | 17.45             | 22.2     |
| 11 | 20061201 | 12:00    | -1.242     | 82.23       | 15.92     | 26.3  | 0.83 | 17.997            | 25       |
| 12 | 20061201 | 18:00    | -0.965     | 83.809      | 16.35     | 26.3  | 0.81 | 17.594            | 21.7     |
| 13 | 20061202 | 0:00     | -0.728     | 85.287      | 15.53     | 27.1  | 0.79 | 17.998            | 22.2     |
| 14 | 20061202 | 6:00     | -0.492     | 86.792      | 14.89     | 27    | 0.78 | 17.681            | 22.6     |
| 15 | 20061202 | 12:00    | -0.231     | 88.118      | 12.61     | 26.5  | 0.81 | 17.71             | 22.9     |
| 16 | 20061202 | 18:00    | -0.026     | 89.287      | 11.67     | 26    | 0.83 | 17.585            | 22.9     |
| 17 | 20061203 | 0:00     | 0.019      | 90.048      | 3.67      | 27.6  | 0.76 | 17.811            | 22.1     |
| 18 | 20061203 | 6:00     | 0.036      | 89.971      | 2.36      | 29.5  | 0.69 | 18.077            | 22.5     |
| 19 | 20061203 | 12:00    | -0.513     | 90.032      | 10.43     | 27.7  | 0.78 | 18.28             | 24.4     |
| 20 | 20061203 | 18:00    | -1.516     | 90.109      | 9.77      | 27    | 0.82 | 18.595            | 23.7     |
| 21 | 20061204 | 0:00     | -1.696     | 90.17       | 3.23      | 26.6  | 0.82 | 18.121            | 22.1     |
|    |          |          |            |             |           |       |      |                   |          |

| 22 | 20061204 | 6:00  | -1.667 | 90.081 | 3.87  | 24.7 | 0.9  | 17.677 | 23   |   |
|----|----------|-------|--------|--------|-------|------|------|--------|------|---|
| 23 | 20061204 | 12:00 | -1.635 | 90.073 | 1.35  | 26   | 0.83 | 17.76  | 22.8 |   |
| 24 | 20061204 | 18:00 | -1.608 | 90.094 | 0.78  | 25.7 | 0.85 | 17.657 | 23.1 |   |
| 25 | 20061205 | 0:00  | -1.577 | 90.111 | 1.62  | 24.3 | 0.91 | 17.53  | 22   |   |
| 26 | 20061205 | 6:00  | -1.641 | 90.019 | 1.37  | 26.7 | 0.78 | 17.254 | 21.7 |   |
| 27 | 20061205 | 12:00 | -1.66  | 90.023 | 1.44  | 27.3 | 0.76 | 17.357 | 21.8 |   |
| 28 | 20061205 | 18:00 | -1.68  | 90.01  | 0.9   | 27.3 | 0.76 | 17.446 | 22.7 |   |
| 29 | 20061206 | 0:00  | -1.654 | 89.995 | 1.21  | 27   | 0.8  | 18.088 | 22.1 |   |
| 30 | 20061206 | 6:00  | -2.02  | 90.552 | 14.48 | 27   | 0.81 | 18.41  | 23.3 |   |
| 31 | 20061206 | 12:00 | -2.904 | 91.861 | 15.86 | 27.2 | 0.79 | 17.938 | 23.3 |   |
| 32 | 20061206 | 18:00 | -3.803 | 93.188 | 15.88 | 26.4 | 0.83 | 18.039 | 23.3 |   |
| 33 | 20061207 | 0:00  | -4.67  | 94.462 | 14.74 | 27.1 | 0.78 | 17.8   | 21.7 |   |
| 34 | 20061207 | 6:00  | -5.01  | 95.004 | 2.04  | 27   | 0.8  | 18.105 | 22.7 |   |
| 35 | 20061207 | 12:00 | -4.968 | 95.026 | 2.78  | 26.5 | 0.84 | 18.483 | 24.3 |   |
| 36 | 20061207 | 18:00 | -4.955 | 95.03  | 0.92  | 27   | 0.8  | 18.138 | 22.5 |   |
| 37 | 20061208 | 0:00  | -4.943 | 94.991 | 1.86  | 27.6 | 0.78 | 18.297 | 22.7 |   |
| 38 | 20061208 | 6:00  | -4.901 | 95.028 | 3.33  | 27.7 | 0.79 | 18.557 | 23   |   |
| 39 | 20061208 | 12:00 | -4.006 | 95.003 | 12.41 | 27.4 | 0.8  | 18.622 | 24.2 |   |
| 40 | 20061208 | 18:00 | -2.745 | 94.929 | 12.52 | 27.1 | 0.8  | 18.139 | 23.2 |   |
| 41 | 20061209 | 0:00  | -1.588 | 94.748 | 12.06 | 27.9 | 0.77 | 18.263 | 21.8 |   |
| 42 | 20061209 | 6:00  | -0.84  | 93.965 | 11.34 | 27.7 | 0.77 | 18.217 | 23   |   |
| 43 | 20061209 | 12:00 | -0.068 | 93.202 | 11.05 | 27.4 | 0.78 | 18.024 | 23.7 |   |
| 44 | 20061209 | 18:00 | 0.847  | 92.502 | 11.8  | 27.3 | 0.79 | 18.195 | 24.1 |   |
| 45 | 20061210 | 0:00  | 1.841  | 91.969 | 12.56 | 28   | 0.77 | 18.534 | 21.7 |   |
| 46 | 20061210 | 6:00  | 2.937  | 91.921 | 9.78  | 28.2 | 0.76 | 18.561 | 23.4 | - |

| Table 7.7-3 Summary | of all | precipitation data |
|---------------------|--------|--------------------|
|                     |        |                    |

| No |      |      | Rainfall S | Start  |        |      | Rainfall Stop |       |        |        |      |  |
|----|------|------|------------|--------|--------|------|---------------|-------|--------|--------|------|--|
| •  | Year | date | time       | Lon    | Lat    | Year | date          | time  | lon    | lat    | mm   |  |
| 1  | 2006 | 1129 | 7:00       | 2.228  | 78.608 | 2006 | 1129          | 9:00  | 2.196  | 78.871 | 0.4  |  |
| 2  | 2006 | 1129 | 18:00      | 1.733  | 79.802 | 2006 | 1130          | 0:00  | 1.515  | 80.353 | 17.7 |  |
| 3  | 2006 | 1130 | 0:00       | 1.515  | 80.353 | 2006 | 1130          | 3:00  | 1.491  | 80.393 | 2.7  |  |
| 4  | 2006 | 1130 | 2:00       | 1.495  | 80.397 | 2006 | 1130          | 3:00  | 1.491  | 80.393 | 2.6  |  |
| 5  | 2006 | 1130 | 8:00       | 1.536  | 80.527 | 2006 | 1130          | 10:00 | 1.285  | 80.544 | 44.8 |  |
| 6  | 2006 | 1130 | 10:00      | 1.285  | 80.544 | 2006 | 1130          | 12:00 | 0.895  | 80.534 | 0.4  |  |
| 7  | 2006 | 1130 | 17:00      | -0.085 | 80.476 | 2006 | 1130          | 18:00 | -0.288 | 80.456 | 1.5  |  |

| 8  | 2006 | 1201 | 13:00 | -1.291 | 81.956 | 2006 | 1201 | 17:00 | -1.09  | 82.964 | 14   |
|----|------|------|-------|--------|--------|------|------|-------|--------|--------|------|
| 9  | 2006 | 1201 | 19:00 | -1.016 | 83.499 | 2006 | 1201 | 20:00 | -0.977 | 83.768 | 0.3  |
| 10 | 2006 | 1203 | 21:00 | -1.729 | 90.133 | 2006 | 1204 | 0:00  | -1.689 | 90.208 | 29.6 |
| 11 | 2006 | 1204 | 5:00  | -1.698 | 90.172 | 2006 | 1204 | 7:00  | -1.672 | 90.152 | 2.6  |
| 12 | 2006 | 1204 | 6:00  | -1.689 | 90.172 | 2006 | 1204 | 9:00  | -1.652 | 89.981 | 11.2 |
| 13 | 2006 | 1204 | 8:00  | -1.656 | 90.045 | 2006 | 1204 | 12:00 | -1.642 | 90.053 | 3.6  |
| 14 | 2006 | 1204 | 11:00 | -1.652 | 90.036 | 2006 | 1204 | 18:00 | -1.611 | 90.077 | 1.1  |
| 15 | 2006 | 1204 | 17:00 | -1.613 | 90.069 | 2006 | 1205 | 0:00  | -1.584 | 90.13  | 47.8 |
| 16 | 2006 | 1204 | 23:00 | -1.588 | 90.123 | 2006 | 1205 | 3:00  | -1.581 | 90.099 | 16.8 |
| 17 | 2006 | 1205 | 2:00  | -1.562 | 90.117 | 2006 | 1205 | 3:00  | -1.581 | 90.099 | 0.2  |
| 18 | 2006 | 1206 | 4:00  | -1.653 | 90     | 2006 | 1206 | 7:00  | -1.894 | 90.369 | 4.5  |
| 19 | 2006 | 1206 | 15:00 | -3.074 | 92.106 | 2006 | 1206 | 18:00 | -3.497 | 92.768 | 1.4  |
| 20 | 2006 | 1206 | 17:00 | -3.342 | 92.552 | 2006 | 1206 | 23:00 | -4.225 | 93.836 | 5.4  |
| 21 | 2006 | 1207 | 6:00  | -5.014 | 95.018 | 2006 | 1207 | 8:00  | -5.023 | 94.998 | 0.2  |
| 22 | 2006 | 1207 | 12:00 | -4.966 | 95.006 | 2006 | 1207 | 14:00 | -4.968 | 95.044 | 4.6  |
| 23 | 2006 | 1209 | 19:00 | 0.664  | 92.618 | 2006 | 1209 | 20:00 | 0.824  | 92.508 | 0.2  |
| 24 | 2006 | 1210 | 16:00 | 4.376  | 92.951 | 2006 | 1210 | 19:00 | 4.941  | 93.522 | 1.3  |

\* Rainfall amount in each sampling period is calculated from SOJ data.

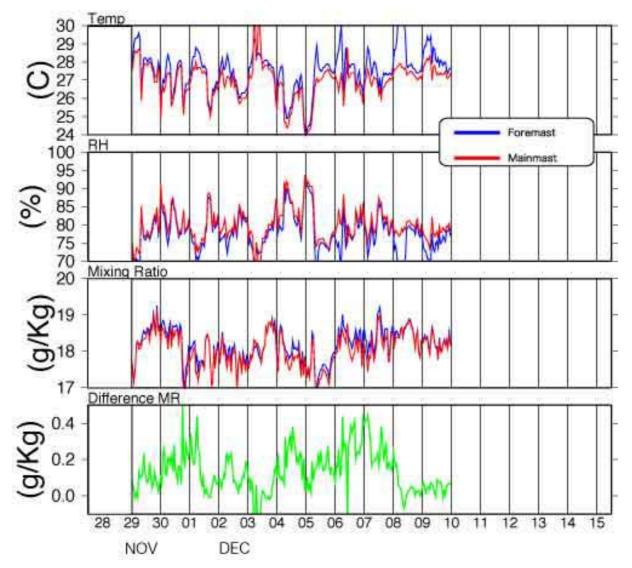



Fig. 7.7-1 Temporal variation of (a) temperature (degK), (b) relative humidity (%), (c) mixing ratio (g/Kg), and (d) difference of mixing ratio between foremast and mainmast height from Maldives to Singapole.

## 7.8 Aerosol optical characteristics measured by Ship-borne Sky radiometer

#### (1) Personnel

Principal Investigator :

Kazuma Aoki (University of Toyama) Associate Professor / not onboard Co-workers:

Tatsuo Endoh (Tottori University of Environmental Studies) Professor / not onboard Tamio Takamura (CEReS, Chiba University) Professor / not onboard Teruyuki Nakajima (CCSR, The University of Tokyo) Professor / not onboard Nobuo Sugimoto (NIES) Chief Research Scientist / not onboard Operation was supported by Global Ocean Development Inc. (GODI).

## (2) Objective

Objective of the observations in this aerosol is to study distribution and optical characteristics of marine aerosols by using a sky radiometer (POM-01 MKII). Furthermore, collections of the data for calibration and validation to the remote sensing data were performed simultaneously

# (3) Methods

Sky radiometer is measuring the direct solar irradiance and the solar aureole radiance distribution, has seven interference filters. Analysis of these data is performed by SKYRAD.pack version 4.2 developed by Nakajima *et al.* 1996.

## (4) Results

Data obtained in this cruise will be analyzed at University of Toyama.

- @ Measured parameters
- Aerosol optical thickness at 5 wavelengths (400, 500, 675, 870 and 1020 nm)
- Ångström exponent
- Single scattering albedo at 5 wavelengths
- Size distribution of volume (0.01  $\mu m 20 \,\mu m)$

# GPS provides the position with longitude and latitude and heading direction of the vessel, and azimuth and elevation angle of sun. Horizon sensor provides rolling and pitching angles.

(5) Data Archives

Measurements of aerosol optical data are not archived so soon and developed, examined, arranged and finally provided as available data after a certain duration. All data will archived at University of Toyama (K.Aoki, SKYNET/SKY: http://skyrad.sci.u-toyama.ac.jp/) and Chiba University (T.Takamura, SKYNET) after the quality check and submitted to JAMSTEC within 3-year.

## 7.9 The production-consumption mechanisms and sea-air flux of greenhouse gases

## 1. Personnel

Ayako FUJII,<sup>1</sup> Kohei KAWANO,<sup>1</sup> Narin BOONTANON,<sup>2</sup> Osamu YOSHIDA,<sup>3</sup> Shuichi WATANABE<sup>4</sup>, Naohiro YOSHIDA<sup>1,5</sup> <sup>1</sup>Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology <sup>2</sup>Faculty of Environment and Resource Studies, Mahidol University <sup>3</sup>Faculty of Environment Systems, Rakuno Gakuen University <sup>4</sup>JAMSTEC <sup>5</sup>Frontier Collaborative Research Center, Tokyo Institute of Technology

#### 2. Sampling

Sampling of Tokyo Institute of Technology (Yoshida Laboratory) for seawater and ambient air are listed in Table 1, Table 2and Table 3.

### 3. Nitrous oxide and related substances

Ayako FUJII, Narin BOONTANON, Kohei KAWANO, Osamu YOSHIDA, Shuichi Watanabe and Naohiro YOSHIDA

Tokyo Institute of Technology Group (Yoshida Laboratory)

## 3.1. Introduction

Recently considerable attention has been focused on emission of biogenic trace gases from ecosystems, since the gases contain a significant amount of greenhouse gases such as carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O). Isotopic signatures of these gases are well recognized to provide constraints for relative source strength and information on reaction dynamics concerning their formation and biological pathways. Nitrous oxide is a very effective heat-trapping gas in the atmosphere because it absorbs outgoing radiant heat in infrared wavelengths that are not captured by the other major greenhouse gases, such as water vapor and CO<sub>2</sub>. The annual input of N<sub>2</sub>O into the atmosphere is estimated to be about 16.4 Tg N<sub>2</sub>O-N yr<sup>-1</sup>, and the oceans are believed to contribute more than 17% of the total annual input (IPCC, 2001).

 $N_2O$  is produced by the biological processes of nitrification and denitrification (Dore et al., 1998; Knowles et al., 1981; Rysgaard et al., 1993; Svensson, 1998; Ueda et al., 1993). Depending on the redox conditions,  $N_2O$  is produced from inorganic nitrogenous compounds (NH<sub>3</sub> or NO<sub>3</sub><sup>-</sup>), with subsequently different isotopic fractionation factors. The isotopic signatures of  $N_2O$  confer constraints on the relative source strength, and the reaction dynamics of  $N_2O$  biological production pathways are currently under investigation. Furthermore, isotopomers of  $N_2O$  contain more easily interpretable biogeochemical information as to their sources than obtained from conventional bulk <sup>15</sup>N and <sup>18</sup>O measurements (Yoshida and Toyoda, 2000).

## 3.2 Materials and methods

Samples were collected in MR06-05 leg 2 research expedition on the R/V Mirai from November 28, 2006 to December 13, 2006. The production-consumption mechanisms of dissolved  $N_2O$  in Indian Ocean was investigated by collecting vertical seawater samples (5 stations), dissolved oxygen (DO) (5stations), dissolved oxygen (DO) (5stations), chlorophyll a (Chl.a) (5stations), particulate organic matter (POM) (5 stations), on-board incubation experiments (5 stations). The sea-air fluxes (sampling sea surface water and ambient water) (7 stations). And then, the sea-air flux of N2O in Indian Ocean was investigated by collecting sea surface water and ambient water.

#### 3.2.1 N<sub>2</sub>O concentration and isotope analyses

Water samplings were carried out at the indicated depths using a CTD water sampler. For  $N_2O$  analyses, water samples were introduced into 225 ml glass vial and then sterilized with mercury chloride (1 ml saturated HgCl<sub>2</sub> solution per vial). The vial was then sealed with a butyl-rubber septum and an aluminum cap, taking care to avoid bubble formation, and then brought back to the laboratory and stored at 4°C until the analyses were conducted. Dissolved  $N_2O$  concentrations and its isotopic compositions will be measured by using GC/C/IRMS.

## 3.2.2 DO

Samples were collected and measured at stations with CTD observation. The data are showed in Fig.1.

## 3.2.3 Nutrients

Samples for nutrients ( $NH_4^+$ ,  $NO_3^-$ ,  $NO_2^-$ ) were collected into 100ml PP bottle and stored at -20°C. They will be measured by using Auto Analyzer.

#### 3.2.4 Chlorophyll a (Chl.a)

Samples for Chlorophyll a (Chl.a) were collected. Sea waters are filtrated (500ml to 1000ml) and stored into 9ml vials satisfied with Dimetylformamid, and stored at -20°C. They will be measured by using fluorophotometer. These data will be used for calibration with value of fluorescence sensor.

## 3.2.5 POM

Samples for POM were collected at the depth at the depth of Chlorophyll a (Chl.a) concentration maximum and that depth plus 50m and 100m each. After the filtration, the filter were treated with 0.05N hydrochloric acid, washed with Milli-Q water and then dried at 60°C for 48 hrs and stored. They will be measured by

#### 3.2.6 On-board incubation experiment (Fujii)

The water samples for on-board incubation experiments were collected at Surface layer (10m) and Oxygen minimum layer which expected for the highest N<sub>2</sub>O production. Water samples were introduced into 225 ml glass vial sealed with a butyl rubber septum and an aluminum cap. After 2days and 5days at in situ temperature, the sample was then sterilized with mercury chloride and stored at 4°C until the analyses were conducted. Dissolved N<sub>2</sub>O concentrations and its isotopic compositions will be measured by using GC/C/IRMS.

#### 3.3 Expected results

 $N_2O$  concentration of sea surface water affects the sea-air flux directly. And there is a possible that N2O gases are carried at the place seawater is transporting from deep layer to surface layer like upwelling zone. However, the pathway of  $N_2O$  production and consumption mechanisms is also still unresolved. So it is very important to understand vertical profiles of N2O.Usually  $N_2O$ production in surface layer is predominantly carried out nitrification, but denitrification also occurs in the case of oxygen concentration is low (Maribeb and Laura, 2004). In deeper layer during the settling particles or fecal pellets which may produce from phytoplankton or zooplankton, either directly or indirectly. In such pattern,  $N_2O$  could be produced through in situ biological processes of settling particles in subsurface layer and the maxima concentrations could be observed. Consequently, the isotopic measurement of these gases becomes a useful parameter for determining the origin and production pathway of  $N_2O$  under investigation. at least three factors could be control the  $N_2O$  concentration and its isotopic compositions in these study areas are:

- The isotopic compositions of dissolved N<sub>2</sub>O were governed through the gas exchange with the atmospheric N<sub>2</sub>O in the surface layer.
- (ii) The well mixing of  $N_2O$  in the deeper part may occur due to the transportation from upper layer or the transportation of  $N_2O$  from the other area by the occurrence of ocean current.
- (iii) The isotopic and compositions of surface and oxygen minimum layer N<sub>2</sub>O could provide an information of N<sub>2</sub>O production mechanisms, and could be estimate for those N<sub>2</sub>O production-consumption rate.

#### 3.4 References

Campbell, L., Hongbin, L., Hector, A.N. and Vaulot, D., 1997. Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at station ALOHA during the 1991-1994 ENSO event. Deep-Sea Research I 44, 167-192.

- Cohen, Y. and Gordon, L.I., 1978. Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production. Deep Sea Research **25**, 509-524
- Dore, J.E., Popp, B.N., Karl, D.M. and Sansone, F.J., 1998. A large source of atmospheric nitrous oxide from subtropical North Pacific surface water. Nature **396**, 63-66.
- Intergovernmental Panel on Climate Change 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge Univ. Press, New York.
- Knowles, R., Lean, D.R.S. and Chan, Y.K., 1981. Nitrous oxide concentrations in lakes: variations with depth and time. Limnology and Oceanography **26**, 855-866.
- Maribeb, C.-G. and Laura, F., 2004. N<sub>2</sub>O cycling at the core of the oxygen minimum zone off northern Chile. Marine Ecology Progress Series **280**, 1-11.
- Olson, R.J., 1981. Differential photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the primary nitrite maximum. Journal of Marine Research **39:** 227-238.
- Rysgaard, S., Risgaard-Petersen, N., Nielsen, L.P. and Revsbech, N.P., 1993. Nitrification and denitrification in lake and estuarine sediments measured by the <sup>15</sup>N dilution technique and isotope pairing. Applied and Environmental Microbiology **59**, 2093-2098.
- Svensson, J.M., 1998. Emission of N<sub>2</sub>O, nitrification and denitrification in a eutrophic lake sediment bioturbated by Chironomus plumosus. Aquatic Microbial Ecology **14**, 289-299.
- Yoshida, N. and Toyoda, S., 2000. Constraining the atmospheric N<sub>2</sub>O budget from intramolecular site preference in N<sub>2</sub>O isotopomers. Nature **405**, 330-334.

#### 4. Methane

Methane concentration and stable isotopic distribution as indicators of biogenic methane dynamics in Indian Ocean

Kohei Kawano, Osamu YOSHIDA, Ayako FUJII, Narin BOONTANON, and Naohiro YOSHIDA Tokyo Institute of Technology Group (Yoshida Laboratory)

#### 4.1. Introduction

Atmospheric methane ( $CH_4$ ) is a trace gas playing an important role in the global carbon cycle as a greenhouse gas. Its concentration has increased by about 1050 ppbv from 700 ppbv since the pre-industrial era (IPCC, 1995). In order to understand the current global methane cycle, it is necessary to quantify its sources and sinks. At present, there remain large uncertainties in the

estimated methane fluxes from sources to sinks. The ocean's source strength for atmospheric methane should be examined in more detail, even though it might be a relatively minor source, previously reported to be 0.005 to 3% of the total input to the atmosphere (Cicerone and Oremland, 1988; Bange et al., 1994).

To estimate an accurate amount of the methane exchange from the ocean to the atmosphere, it is necessary to explore widely and vertically. Distribution of dissolved methane in surface waters from diverse locations in the world ocean is often reported as a characteristic subsurface maximum representing a supersaturation of several folds (Yoshida et al., 2004). Although the origin of the subsurface methane maximum is not clear, some suggestions include advection and/or diffusion from local anoxic environment nearby sources in shelf sediments, and in situ production by methanogenic bacteria, presumably in association with suspended particulate materials (Karl and Tilbrook, 1994). These bacteria are thought to probable live in the anaerobic microenvironments supplied by organic particles or guts of zooplankton (Alldredge and Cohen, 1987).

So, this study investigates in detail profile of methane concentration and stable isotopic distribution in the water column in the central Indian Ocean as open ocean to clarify methane dynamics and estimate the flux of methane to the atmosphere. A better understanding of the CH4 budget, and how it is changing with time, is needed to predict more accurately the future role of CH4 in climate change.

#### 4.2. Materials and methods

Seawater samples are taken by CTD-CAROUSEL system attached Niskin samplers of 12 L at 29 layers and surface layer taken by plastic bucket. Each sample was carefully subsampled into 30, 125, 600 mL glass vials to avoid air contamination for analysis of methane concentration, carbon isotope ratio, and hydrogen isotope ratio respectively. The seawater samples were poisoned by 20  $\mu$ L (30 and 125 mL vials) or 100  $\mu$ L (600 mL vial) of mercuric chloride solution (Tilbrook and Karl, 1995; Watanabe et al., 1995), and were closed with rubber and aluminum caps. These were stored in a dark and cool place until we got to land, where we conducted gas chromatographic analysis of methane concentration and mass spectrometric analysis of carbon and hydrogen isotopic composition at the laboratory.

The analytical method briefly described here: The system consists of a purge and trap unit, a desiccant unit, rotary valves, a gas chromatograph equipped with a flame ionization detector for concentration of methane, GC/C/IRMS for carbon isotope ratio of methane, GC/TC/IRMS for hydrogen isotope ratio of methane, and data acquisition units. The entire volume of seawater in each glass vial was processed all at once to avoid contamination and loss of methane. Precision obtained from replicate determinations of methane concentration was estimated to be better than 5% for the usual concentration of methane in seawater.

4.3. Expected results

Subsurface maximum concentrations of methane (>3 nmol kg<sup>-1</sup>) were expected to be observed in the central Indian Ocean. A commonly-encountered distribution in the upper ocean with a methane peak within the pycnocline (e.g., Ward et al., 1987; Owens et al., 1991; Watanabe et al., 1995). Karl and Tilbrook (1994) suggested the suboxic conditions would further aid the development of microenvironments within particles in which methane could be produced. The organic particles are accumulated in the pycnocline, and methane produced in the micro reducing environment by methanogenic bacteria. Moreover, in situ microbial methane production in the guts of zooplankton can be expected (e.g., Owens et al., 1991; de Angelis and Lee, 1994; Oudot et al., 2002). Watanabe et al. (1995) pointed out that the diffusive flux of methane from subsurface maxima to air-sea interface is sufficient to account for its emission flux to the atmosphere. In the mixed layer above its boundary, the methane is formed and discharged to the atmosphere in part, in the below its boundary, methane diffused to the bottom vertically. By using concentration and isotopic composition of methane and hydrographic parameters for vertical water samples, it is possible to clarify its dynamics such as production and/or consumption in the water column.

Kelley and Jeffrey (2002) observed in the equatorial upwelling region of 10 and 20% supersaturated methane. In this study, in situ methane production result in the property distributions and large methane flux in the Indian Ocean can be expected.

4.4 References

- Alldredge, A. A., Y. Cohen, Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets, Science, 235, 689-691, 1987.
- Bange, H. W., U. H. Bartell, S. Rapsomanikis, and M. O. Andreae, Methane in the Baltic and the North seas and a reassessment of the marine emissions of methane, Global Biogeochem. Cycles, 8, 465–480, 1994.
- Cicerone, R. J., and R. S. Oremland, Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles, 2, 299–327, 1988.
- de Angelis, M. A., and C. Lee, Methane production during zooplankton grazing on marine phytoplankton, Limnol. Oceanogr., 39, 1298-1308, 1994.
- IPCC (Intergovernmental Panel on Climate Change), Climate Change 1995, in The Science of Climate Change, edited by J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, Cambridge Univ. Press, New York, 1995.
- Karl, D. M., and B. D. Tilbrook, Production and transport of methane in oceanic particulate organic matter, Nature, 368, 732–734, 1994.
- Kelley C. A. and Jeffrey, W. H. 2002. Dissolved methane concentration profiles and air-sea fluxes from 41S to 27N. Global. Biogeochem. Cycle, 16, No.3, 10.1029/2001GB001809.
- Oudot, C., P. Jean-Baptiste, E. Fourre, C. Mormiche, M. Guevel, J-F. Ternon, and P. L. Corre, Transatlantic equatorial distribution of nitrous oxide and methane, Deep-Sea Res., Part I 49,

1175-1193, 2002.

- Owens, N. J. P., C. S. Law, R. F. C. Mantoura, P. H. Burkill, and C. A. Llewellyn, Methane flux to the atmosphere from the Arabian Sea, Nature, 354, 293–296, 1991.
- Tilbrook, B. D., and D. M. Karl, Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre, Mar. Chem., 49, 51–64, 1995.
- Ward, B. B., K. A. Kilpatrick, P. C. Novelli, and M. I. Scranton, Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters, Nature, 327, 226–229, 1987.
- Watanabe, S., N. Higashitani, N. Tsurushima, and S. Tsunogai, Methane in the western North Pacific, J. Oceanogr., 51, 39–60, 1995.
- Yoshida, O., H. Y. Inoue , S. Watanabe, S. Noriki, M. Wakatsuchi, Methane in the western part of the Sea of Okhotsk in 1998-2000, J. Geophys. Res., 109, C09S12, doi:10.1029/2003JC001910, 2004.

Table 1 The sampling position with CTD observation (seawater and ambient air)

7.9-7

| No. | Latitude  | Longitude  |
|-----|-----------|------------|
| 1   | 1.32.33 N | 80.31.77 E |
| 2   | 1.20.20 S | 80.31.21 E |
| 3   | 0.03.15 N | 89.55.42 E |
| 4   | 1.38.42 S | 90.00.52 E |
| 5   | 4.56.21 S | 95.01.83 E |

 Table 2
 The sampling position (sea surface water and ambient air)

| No. | Latitude  | Longitude  |
|-----|-----------|------------|
| 1   | 0.45.40 S | 85.04.69 E |
| 2   | 0.26.96 S | 87.07.21 E |

# Table 3 Sampling items

| No. | Items                                             |
|-----|---------------------------------------------------|
| 1   | N <sub>2</sub> O/CH <sub>4</sub> Flux             |
| 2   | DO                                                |
| 3   | N <sub>2</sub> O concentration and isotope(Fujii) |
| 4   | N <sub>2</sub> O concentration (NOK)              |
| 5   | CH <sub>4</sub> concentration                     |
| 6   | $CH_4$ isotope (delta <sup>13</sup> C)            |
| 7   | CH <sub>4</sub> isotope (delta D)                 |
| 8   | Nutrients                                         |
| 9   | Chl.a                                             |
| 10  | РОМ                                               |
| 11  | Incubation 1 (NOK)                                |
| 12  | Incubation 2 (Fujii)                              |

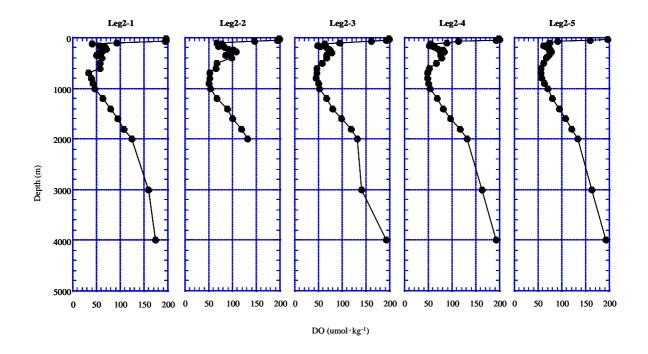



Fig.1 Data of Dissolved Oxygen (DO)

## 7.10 Infrared radiometer

### (1) Personnel

Hajime Okamoto (CAOS, Tohoku University): Principal Investigator Naoki Mashiko (CAOS, Tohoku University): Student (Master 1) Kaori Sato ((CAOS, Tohoku University): Student, Doctor Course 1 Nobuo Sugimoto (National Institute for Environmental Studies) Ichiro Matsui (National Institute for Environmental Studies)

#### (2) Objective

The infrared radiometer (hereafter IR) is used to derive the temperature of the cloud base and emissivity of the thin ice clouds. Main objectives are to use study clouds and climate system in tropics by the combination of IR with active sensors such as lidar and 95GHz cloud radar. From these integrated approach, it is expected to extend our knowledge of clouds and climate system. Special emphasis is made to retrieve cloud microphysics in upper part of clouds, including sub-visual clouds that are recognized to be a key component for the exchange of water amount between troposphere and stratosphere.

# (3) Method

IR instrument directly provides broadband infrared temperature (9.6-10.5 m).

| Temperature range | -100 to 100°C                          |
|-------------------|----------------------------------------|
| Accuracy          | 0.5 °C                                 |
| Mode              | 24hours                                |
| Time resolution   | 1 min.                                 |
| Field of view     | Less than 1° (will be estimated later) |
| Spectral region   | 9.6-10.5 m                             |

General specifications of IR system (KT 19II, HEITRONICS)

This is converted to broadband radiance around the wavelength region. This is further combined with the lidar or radar for the retrieval of cloud microphysics such as optical thickness at visible wavelength, effective particle size. The applicability of the retrieval technique of the synergetic use of radar/IR or lidar/IR is so far limited to ice clouds. The microphysics of clouds from these techniques will be compared with other retrieval technique such as radar/lidar one or radar with multi-parameter.

## (4) Data archive

The data archive server is set inside Tohoku University and the original data and the results of the analyses will be available from us.

## (5) Remarks

During MR-06-05 leg.2 cruise, observation wasn't done because IR was out of order.

## 95GHz cloud profiling radar

## (1) Personnel

Hajime Okamoto (CAOS, Tohoku University): Principal Investigator
Naoki Mashiko (CAOS, Tohoku University): Student, Master course 1
Kaori Sato ((CAOS, Tohoku University): Student, Doctor Course 1
Toshiaki Takano (Chiba University)
Yoshinori Kinoshita (Chiba University): Student, Master course 1
Shinichi Yokote (Chiba University): Student, Master course 1
Nobuo Sugimoto (National Institute for Environmental Studies)
Ichiro Matsui (National Institute for Environmental Studies)

(2) Objective

Main objective for the 95GHz cloud radar is to detect vertical structure of cloud and precipitation in the observed region. Combinational use of the radar and lidar is recognized to be a powerful tool to study vertical distribution of cloud microphysics, i.e., particle size and liquid/ice water content (LWC/IWC).

## (3) Method

Basic output from data is cloud occurrence, radar reflectivity factor and cloud microphysics. In order to derive reliable cloud amount and cloud occurrence, we need to have radar and lidar for the same record.

Radar / lidar retrieval algorithm has been developed in Tohoku University. The algorithm is applied to water cloud in low level and also cirrus cloud in high altitude. In order to analyze the radar data, it is first necessary to calibrate the signal to convert the received power to radar reflectivity factor, which is proportional to backscattering coefficient in the frequency of interest. Then we can interpolate radar and lidar data to match the same time and vertical resolution. Finally we can apply radar/lidar algorithm to infer cloud microphysics.

# (4) Results

The time height cross-section of radar reflectivity factor obtained in 09-December during MR-06-05 leg.2 cruise. Vertical extent is 20km. It is seen that there are several convective activities which often reach 15km.

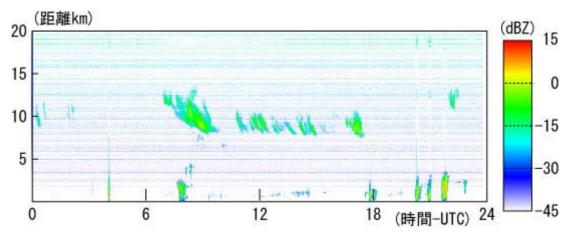



Fig. 1 Time height cross section of radar reflectivity factor in dBZe in 09-December during MR06-05 leg. 2 cruise.

# (5) Data archive

The data archive server is set inside Tohoku University and the original data and the results of the analyses will be available from us.

## (6) Remarks

The cloud radar is successfully operated for 24 hours.

## 7.11 GPS Meteorology

## (1) Personnel

| Mikiko Fujita      | (JAMSTEC) | Principal Investigator |
|--------------------|-----------|------------------------|
| Souichiro SUEYOSHI | (GODI)    |                        |
| Norio NAGAHAMA     | (GODI)    |                        |
| Ryo OHYAMA         | (GODI)    |                        |

## (2) Objective

Getting the GPS satellite data to derived estimates of the total column integrated water vapor content of the atmosphere.

# (3) Method

The GPS satellite data was archived to the receiver (Ashtech Xstream) with 5 sec interval. The GPS antenna (Margrin) was set on the deck at the part of stern. This observation was carried out from November 29, 2006 through December 12, 2006.

## (4) Results

The time series of the total column integrated water vapor at November 29, 2006, which was calculated from GPS satellite data using the TRACK utility in the GAMIT analysis software, is shown in Fig. 7.11-1. They include the specific humidity (SH). The time-longitude cross sections of convective activity estimating by METEOSAT satellite data are shown in Fig. 7.11-2.

#### (5) Data archive

Raw data is recorded as RINEX format every 5 seconds during ascent. These raw datasets is available from M. Fujita of JAMSTEC.

#### (6) Remarks

The significant increment with water vapor was observed around 0600Z 29 December (in Fig. 7.11-1) due to some convective system over the Indian Ocean (Fig. 7.11-2). Before through the convection, precipitable water vapor increased drastically.

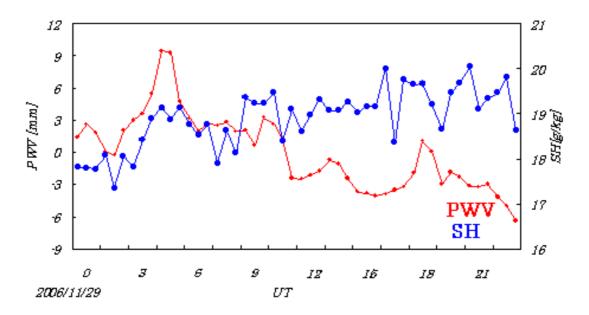



Fig. 7.11-1 The time series of the precipitable water vapor (PWV, shown by deviation from diurnal average) and surface specific humidity (SH).

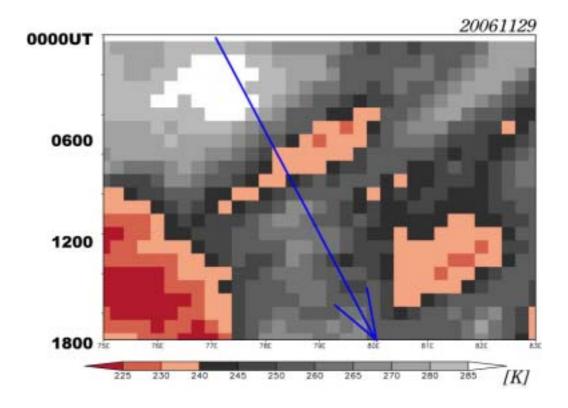



Fig. 7.11-2 The time-longitude cross sections of convective activity around the Maldives estimating by METEOSAT satellite (copyright 2006 EUMETSAT) data in 29 November 2006. The blue line indicates the track of R/V Mirai.