5.26 Distribution and ecology of oceanic Halobates and their responce to environmental factors

(1) Personnel (*: Leg-1, **: Leg-2, ***: Leg-1+2)

Tetsuo HARADA* (Kochi Univ.) - Principal Investigator
Takero SEKIMOTO*** (Kochi Univ.)
Yuki OSUMI*** (Kochi Univ.)
Takashi SHIRAKI* (Kochi Univ.)
Akane KOBAYASHI* (Kochi Univ.)
(2) Introduction and Objectives

Many great voyages were launched to explore the oceans and what lies beyond, because they have always held a great fascination to us. A great variety of marine organisms were collected and describe during these voyages, but insects appear to have received little attention (Andersen \& Chen, 2004). Although they are the most abundant animals on land, insects are relatively rare in marine environments (Cheng, 1985). However, a few thousand insect species belonging to more than 20 orders are considered to be marine (Cheng \& Frank, 1993; Cheng, 2003). The majority of marine insects belong to the Coleoptera, Hemiptera, and Diptera, and they can be found in various marine habitats. However, the only insects to live in the open ocean are members of the genus Halobates, commonly known as sea-skaters. They belong to the family Gerridae (Heteroptera), which comprises the common pond-skaters or water-striders. Unlike most of its freshwater relatives, the genus Halobates is almost exclusively marine. Adults are small, measuring only about 0.5 cm in body length, but they have rather long legs and may have a leg span of 1.5 cm or more except for a new species, Halobates megamoomario. This new species which has very long boy length of 0.9 cm and large mid-leg span of 3.2 cm has been newly and recently collected in the tropical Pacific Ocean during the cruise, MR-06-05-Leg 3, and described (Harada et al., submitted). They are totally wingless at all stages of their life cycle and are confined to the air-sea interface, being an integral member of the pleuston community (Cheng, 1985). One may wonder how much tiny insects have managed to live in the open sea, battling waves and storms. In life, sea-skaters appear silvery. On calm days ocean-going scientists have probably seen them as shiny spiders skating over the sea surface. It is not known whether ancient mariners ever saw them, and no mention of their presence has been found in the logs of Christopher Columbus'S (1451-1506) ships or other ships that sailed to and from the New World (Andersen \& Cheng, 2004).

Forty-seven species of Halobates are now known (Andersen \& Cheng, 2004; Harada et al., submitted). Six are oceanic and are widely distributed in the Pacific, Atlantic and the Indian Oceans. The remaining species occur in near-shore areas of the tropical seas associated with mangrove or other marine plants. Many are endemic to islands or island groups (Cheng, 1989).

The only insects that inhabit the open sea area are seven species of sea skaters: Halobates micans, H. sericeus, H. germanus, H. splendens, H. sobrinus (Cheng, 1985) and new oceanic species of H. princeps and H. moomario (proposed new species: Harada \& Sekimoto, prepared) under description (Harada et al., submitted). Three species, Halobates sericeus, H. micans and H. germanus inhabit tropical and temperate areas of the Pacific Ocean in the northern hemisphere, including The Kuroshio Current and the East China Sea (Andersen \& Polhemus, 1976, Cheng, 1985). Halobates sericeus, H. micans and H germanus are reported from latitudes of $13^{\circ} \mathrm{N}-40^{\circ} \mathrm{N}, 0^{\circ} \mathrm{N}-35^{\circ} \mathrm{Nand} 0^{\circ} \mathrm{N}-37^{\circ} \mathrm{N}$, respectively, in the Pacific Ocean (Miyamoto \& Senta,,1960; Andersen \& Polhemus, 1976; Ikawa et al., 2002). However, this information was collected on different cruises and in different times of the years. There have been several ecological studies based on samples collected in a specific area in a particular season during the six cruises of R/V HAKUHO-MARU: KH-02-01, KH-06-02, TANSEI-MARU: KT-07-19, KT-08-23 and R/V MIRAI: MR-06-05-Leg 3, MR-08-02.
During one cruise, KH-02-01, one sea skater species, Halobates sericeus, was collected at 18 locations in
the East China Sea area ($27^{\circ} 10^{\prime} \mathrm{N}-33^{\circ} 24^{\prime} \mathrm{N}, 124^{\circ} 57^{\prime} \mathrm{E}-129^{\circ} 30^{\prime} \mathrm{E}$) (Harada, 2005), and H. micans and/or H . germanus at only 8 locations in the area south of $29^{\circ} 47^{\prime} \mathrm{N}$, where water temperatures were more than $25^{\circ} \mathrm{C}$. At three locations, where the water temperature was less than $23^{\circ} \mathrm{C}$, neither H. micans nor H. germanus were caught.

During another cruise, KH-06-02, in the latitude area of $12^{\circ} \mathrm{N}$ to $14^{\circ} 30^{\prime} \mathrm{N}$, Halobates micans were caught at 6 of 7 locations, while H.germanus and H. sericeus were caught at only 3 and 1 location(s), respectively (Harada et al, 2006). However, at $15^{\circ} 00^{\prime} \mathrm{N}$ or northern area, H. germanus were caught at 14 of 19 locations, whereas H. micans and H. cericeus were caught at only 8 and 6 locations, respectively (Harada et al, 2006).

In the cruise, MR-06-05-Leg 3, larvae of both H. micans and H. germanus were very abundant at $6^{\circ} \mathrm{N}$, whereas adults of H . germanus alone were completely dominant at $2^{\circ} \mathrm{N}$ on the longitudinal line of $130^{\circ} \mathrm{E}$. On the longitudinal line of $138^{\circ} \mathrm{E}$, larvae and adults of H . micans alone were dominant at points of 5° and $8^{\circ} \mathrm{N}$, while adults of H . germanus were abundant between 0° and $2^{\circ} \mathrm{N}$. At the two stations of St. $37\left(6^{\circ} \mathrm{N}, 130^{\circ} \mathrm{E}\right)$ and St. $52\left(5^{\circ} \mathrm{N}, 138^{\circ} \mathrm{E}\right)$, relatively great number of larvae of H. sericeus were collected. This species has been known to be distributed in the northern area of the Pacific Ocean. At St. $52\left(6^{\circ} \mathrm{N}, 138^{\circ} \mathrm{E}\right)$, it was heavily raining around the ship while trailed.
In the cruise, KT-07-19 on the northern edge of Kuroshio Current, H. sericeus was mainly collected in the northern-eastern area of $135^{\circ}-140^{\circ} \mathrm{E}, 34^{\circ}-35^{\circ} \mathrm{N}$ whereas H . germanus and H. micans were mainly collected in the relatively southern-western area of $131^{\circ}-133^{\circ} \mathrm{E}$., $31^{\circ}-33^{\circ} \mathrm{N}$. Only H. sericeus can be transferred by the Kuroshio Current onto the relatively northern-eastern area and to do reproduce at least in the summer season. In the cruise of KT-08-23, Most of "domestic" specimen collected in the area northern to Kuroshio current and near to Kyushu and Shikoku islands in September were H. germanus (Harada et al., submitted).
All samplings of Halobates have been performed at different geographical positions in any cruise in the Pacific Ocean so far. However, there has been no information on the dynamics in species and individual compositions in relatively eastern area of $145-160^{\circ} \mathrm{E}, 0-10^{\circ} \mathrm{N}$ of tropical Pacific Ocean. This study aims, first, to perform samplings in this area of the Western Pacific Ocean and examine dynamics of the species composition and reproductive and growth activity and compare these data to the data in the past which were got in more western area of $130-137^{\circ} \mathrm{E}, 0-10^{\circ} \mathrm{N}$ in the cruise, MR-06-05-Leg 3 (Harada et al., 2007; Harada et al., 2011a).

During the cruise, MR-08-02, on the longitudinal line of $130^{\circ} \mathrm{E}$, larvae of both H. micans and H. germanus were very abundant at $5-12^{\circ} \mathrm{N}$, whereas adults of H . sericeus alone were dominant at $17^{\circ} \mathrm{N}$. In the lower latitude area of $5-8{ }^{\circ} \mathrm{N}$, all the three described species, H. micans, H. germanus and H. sericeus and un-described species, Halobates moomario (Harada \& Sekimoto, prepared) were collected. At a fixed point located at $12^{\circ} \mathrm{N}, 135^{\circ} \mathrm{E}, \mathrm{H}$. micans was dominant through the sampling period of 20 days, whereas H . sericeus was collected mainly in the latter half of the period. Higher number of Halobates (593) was collected in the first half of the sampling period ($8^{\text {th }}-17^{\text {th }}$ June, 2008) when the weather was very fine than that (427) in the second half ($18^{\text {th }}-27^{\text {th }}$ June, 2008) when the typhoon No 6 was born and developed near the fixed sampling point.

In this cruise of MR-09-04, on the longitudinal line of $155-156^{\circ} \mathrm{E}$ H. germanus was very dominant, whereas three adults of H. micans, H. germanus and H. sericeus were dominant at $5^{\circ} \mathrm{N}$ on the longitudinal line of 147 ${ }^{\circ}$ E during this cruise held in Nov 4-Dec 12, 2009 (Harada et al., 2009; Harada et al., 2010a). Among several latitudes of $0-10^{\circ} \mathrm{N}$, peak of number of individuals collected was located at $8{ }^{\circ} \mathrm{N}, 5^{\circ} \mathrm{N}$ and $0-2^{\circ} \mathrm{N}$ for H.m., H.g. and H.s., respectively, on the longitudinal line of $155-156^{\circ}$ E. From latitudinal point of view, H. micans and H.germanus. were abundant in $5-8^{\circ} \mathrm{N}$, whereas H. sericeus and H. moomario were in $0-5^{\circ} \mathrm{N}$. Except for St. 6 at $3^{\circ} \mathrm{N}, 147^{\circ} \mathrm{E}$, more than half of specimen collected were larvae at the remaining St. 1-5 and St.7,8.. Un-described new species, Halobates moomario was mostly on the longitudinal line of $147^{\circ} \mathrm{E}$. On the
longitudinal line of $147^{\circ} \mathrm{E}$, more newly hatched larvae were collected than those on the line of 155-156E. Halobates micans was dominantly inhabiting at a fixed point of $3 \mathrm{~N}, 139 \mathrm{E}$ in the tropical Pacific Ocean during a science cruise of MR-10-03 administered in May and June of 2010.

In the cruise, KH-10-04-Leg. 1 (Harada et al., 2010b), the samplings of Halobates inhabiting temperate and subtropical Pacific Ocean along the cruise track from Tokyo to Honolulu for the 2 weeks showed that four species of Halobates micans, H.germanus, H. sericeus, H. moomario inhabited in the relatively northern and western area of $30^{\circ} \mathrm{N}-34^{\circ} \mathrm{N}$ and $140^{\circ} \mathrm{E}-144^{\circ} \mathrm{E}$, although H. sericeus was dominant species. In the relatively southern and eastern area of $19^{\circ} \mathrm{N}-29^{\circ} \mathrm{N}$ and $147^{\circ} \mathrm{E}-163^{\circ} \mathrm{W}$, only H. sericeus was exclusively inhabiting. Many larvae of this species were collected through all the stations and the reproductive activity of H. sericeus seems to be active in this area. Significantly more female-adults were collected rather than male-adults in total (χ ${ }^{2}$-test, $\mathrm{P}<0.01$). The extent of positive phototaxis by females may be higher than that of males, or avoiding behavior from the opening of the Neuston Net might be more active by males than females.

In the cruise, KH-10-04-Leg 2(Harada et al., 2010c), the samplings of Halobates in Central or Eastern Tropical Pacific Ocean showed that Halobates sericeus was dominant at $13^{\circ} 59^{\prime} \mathrm{N}, 162^{\circ} 06^{\prime} \mathrm{W}$, while Halobates megamoomario and Halobates moomario were dominant in the areas of $2^{\circ} 35^{\prime} \mathrm{N}-2^{\circ} 45^{\prime} \mathrm{N}, 164^{\circ} \mathrm{W}-166^{\circ} \mathrm{W}$ and $14^{\circ} \mathrm{N}-17^{\circ} \mathrm{N}, 172^{\circ} \mathrm{W}-176^{\circ} \mathrm{W}$, respectively. In the sampling area of the Central or Eastern Tropical Pacific ocean, the population density of Halobates is relatively low of $3626.4 / \mathrm{km}^{2}$.

In the cruise, KH-10-05-Leg 1 (Harada et al., 2010d), the samplings of Halobates in Tropical Indian Ocean showed that Halobates micans was dominant with estimated population density of about 58000 individuals $/ \mathrm{km}^{2}$ along the cruise track from $04^{\prime} 09 \mathrm{~S}, 094^{\prime} 26 \mathrm{E}$ to $08^{\circ} 40^{\prime} \mathrm{S}, 084^{\circ} 04^{\prime} \mathrm{E}$, while H . micans was also dominant but estimated population density was relatively low of $0-21523 / \mathrm{km}^{2}$ on the line of cruise track from $10^{\circ} 12^{\prime} \mathrm{S}, 080^{\circ} 24^{\prime} \mathrm{E}$ to $15^{\circ} 23^{\prime} \mathrm{S}, 067^{\circ} 48^{\prime} \mathrm{E}$. Positive and negative correlations were shown between chlorophyll conc. and the number of Halobates (mostly H. micans) individuals collected and between oxygen and the number of sea skaters inhabiting in Tropical Indian Ocean, respectively.

This study aims, first, to examine the relationship between the individual number and species components of the oceanic sea skaters of Halobates micans (Heteroptera: Gerridae) and H. germanus and oceanic dynamism on several factors like as precipitation, waves, air temperature, chlorophyll conc. and dissolved oxygen conc. in surface water during 2 months of sampling- and examination-period at the fixed point of $8^{\circ} \mathrm{N}, 80^{\circ} \mathrm{E}$ in Tropical Indian Ocean during the science cruise, MR-11-07 which is participation of CYNDY2011 (Cooperative Indian Ocean experiment on intra-seasonal variability in the Year 2011) an international project on the other hand.

Fresh water species in Gerridae seem to have temperature tolerance from $-3^{\circ} \mathrm{C}$ to $42^{\circ} \mathrm{C}$ (Harada, 2003), because water temperature in fresh water in ponds and river highly changes daily and seasonally. However, water temperatures in the ocean are relatively stable and only range from $24^{\circ} \mathrm{C}$ to $30{ }^{\circ} \mathrm{C}$ in the center of Kuroshio current in southern front of western Japan (Harada, 2005). Adults of Halobates germanus showed semi-heat-paralysis (SHP: static posture with no or low frequency to skate on water surface), when they were exposed to temp. higher than $32^{\circ} \mathrm{C}$ (Harada unpublished, data in the TANSEIMARU cruise: KT-05-27).

In contrast to the temperate ocean, water temperature in the tropical ocean area, is more stable around $30^{\circ} \mathrm{C}$. Therefore, the tropical species of H. micans is hypothesized to have lower tolerances to temperature changes than the tropical-temperate species, H. sericeus. This hypothesis was true in the laboratory experiment during the cruise of KH-06-02-Leg 5 (Harada et al., submitted). When the water temperature increased stepwise $1{ }^{\circ} \mathrm{C}$ every 1 hour, heat-paralysis (ventral surface of thorax attaché to water surface and unable to skate) occurred at $29^{\circ} \mathrm{C}$ to $>35{ }^{\circ} \mathrm{C}$ (increase by 1 to $>7{ }^{\circ} \mathrm{C}$). Three of four specimens in Halobates sericeus were not paralyzed even at $35{ }^{\circ} \mathrm{C}$ and highly resistant to temperature change, while only one of nine in H. micans. and only four of twelve in H. germanus were not paralyzed at $35{ }^{\circ} \mathrm{C}$. On average, H. sericeus, H germanus and H. micans were paralyzed at $>35.6{ }^{\circ} \mathrm{C}$ (SD: 0.89), $>32.9{ }^{\circ} \mathrm{C}(\mathrm{SD}: 2.17)$ and $>31.6{ }^{\circ} \mathrm{C}$ (SD: 2.60) on average,
respectively (Harada et al., submitted).
As an index of cold hardiness, super cooling points (SCPs) have been used in many insects (Bale, 1987, 1993; Worland, 2005). The absence of ice-nucleating agents and/or the lack of an accumulation of cryo-protective elements can often promote higher super cooling points (Milonas \& Savopoulou-Soultani, 1999). SCPs, however, might be estimated as only the lower limits of super cooling capacity and only a theoretical lower threshold for the survival of insects as freeze-non-tolerant organisms. Many insects show considerable non-freezing mortality at temperatures well above the SCPs, a "chill-injury" species (Carrillo et al., 2005; Liu et al., 2007). Liu et al (2009) recently showed that SCPs change in accordance with the process of winter diapauses, decreasing in Dec-Feb and increasing rapidly in Feb-Apr (diapauses completing season) due to making glycogen from trehalose as a "blood suger" leading to lower osmotic pressure in haemolymph due to low "trehalose" level. This relation supports the possibility of SCPs available as an indirect indicator of cold hardiness of insects.

The $0-10^{\circ} \mathrm{N}$ latitude-area in the Pacific Ocean has very complicated dynamic systems of ocean and atmosphere. Because of such complicated system, water/air temperatures and water conductivity (salinity) can be in dynamic change temporally and spatially. Sea skaters inhabiting this area of the Pacific Ocean show relatively high tolerance to temperature changes (heat tolerance) (Harada et al., 2011a), and H. sericeus which is inhabiting wide latitude area of $40^{\circ} \mathrm{N}-40^{\circ} \mathrm{S}$ in the Pacific Ocean is more hardy to temperature increase than other two oceanic sea skaters, H. germanus and H. micans inhabiting narrower latitude range of $25^{\circ} \mathrm{S}-25^{\circ} \mathrm{N}$ and $20^{\circ} \mathrm{S}-20^{\circ} \mathrm{N}$ in the Indian and Pacific Ocean (Harada et al., 2011a). Adult specimens of Halobates micans living at $6^{\circ} \mathrm{S}, 89^{\circ} \mathrm{E}$ where currents from south and north directions hit and get together than those living at other places of $8^{\circ} \mathrm{N}, 89^{\circ} \mathrm{E}$ in the tropical Indian Ocean (Harada et al., 2011b). Due to 3 or $4^{\circ} \mathrm{C}$ of temperature decrease when rain falls, tolerance to high temperature by H. micans becomes weaker in the tropical Pacific Ocean (Harada et al., 2011b). Recently, a cross-tolerance to high and low severe temperature has been reported by fresh water species of semi-aquatic bug, Aquarius paludum (Harada et al., 2010e). Also oceanic sea skaters (all four species of H. micans, H. germanus, H. sericeus and H.sp.) inhabiting tropical ocean showed a negative correlation between heat coma temperature and SCP (Harada et al., 2009: the cruise report of MR-09-04). Similar correlation was also observed only for males of H. sericeus collected on the cruise track between Tokyo and Honolulu, Hawaii (Harada et al., 2010b: the cruise report of KH-10-04-Leg 1).

This study aims, second, to examine whether sea skaters, living at the fixed point of $8 \mathrm{~S}, 80 \mathrm{~S}$ of the tropical Indian Ocean show a high cross tolerance of higher heat tolerance and lower super cooling points (SCP) and also to examine some relationship between SCP as a index of cold hardiness of sea skaters and oceanic dynamism on several factors like as precipitation, waves, air temperature, chlorophyll conc. and dissolved oxygen conc. in surface water.

Insects which have chance to be exposed to sea water or brackish water are known to adopt one of two strategies to survive an stress as higher osmotic pressure, "osmoregulating" and "osmoconforming" (Bradley, 1987). In the former strategy, insect maintains the osmotic pressure in haemolymph relatively lower level against high salinity environment. For example, dipteran larvae including saline-water mosquitoss of the genus Aedes and chironomids (Neumann, 1976; Kokkin, 1986) constantly lose water in saline water. To prevent water loss, larvae drink the external medium and at the same time excrete a concentrated "urine" to keep lower osmotic pressure in the haemolymph. In the latter strategy, osmoconforming, insects of other genera of mosquitoes (Bradley, 1987, 1994) and euryhaline species of other order genera (for example a dragon fly nymph, Enallagma clausam: Stobbart \&
Shaw, 1974) equilibrate the osmotic pressure of the haemolymph with that of the saline environment.
A semi-aquatic bug, Aquarius paludum, a fresh water and semi-cosmopolitan species in Palearctic area response to the exposure to the brackish water: the limit for nymph growth was 0.9% of NaCl , and even in 0.45% of salinity can depress the reproductive activity (down up to $2 / 3$ of fecundity) in the population
inhabiting fresh water habitat (Kishi et al., 2006, 2007, 2009). How do oceanic sea skaters adapt to the brackish and fresh water environment? In the open ocean, some heavy rain can make the sea water file leading to rapid decreasing of osmotic pressure.

In the cruise of KH-09-05-Leg. 7 (Harada \& Sekimoto, 2010: the cruise report), Salinity experiment was performed at the first time on sea skaters of Halobates sp (under the description as Halobates moomario) inhabiting Tomini Bay in Indonesia. The movements of mid- and/or hind legs of all the specimen on the fresh water were paralyzed with unusual back position and quick fluctuating and all ones were dead within 2 hours after the occurrence of such so called "paralysis due to fresh-water shock" The paralysis and death after that occurred only on the fresh water 19-31 hrs and 21-33 hrs, respectively. In total data from Experiments 1-3, females showed significantly longer hours of 27 hrs in survival on average than males only on the fresh. Individuals on $2 / 3$ sea water tended to be in survival longer than those on 100% sea water in Experiments 1-3 (Wilcoxon test on average value: $\mathrm{z}=-1.604, \mathrm{p}=0.109$).

In the cruise of KH-10-04-Leg 2 (Harada et al., 2010c: the cruise report), on the fresh water, the movements of mid- and/or hind legs of all the specimen on the fresh water were paralyzed with unusual back position and quick fluctuating just after transferring to the fresh water and all ones were dead within 2-3 hours after the transferring to the fresh water in all three species of Halobates sericeus, H. moomario and H. megamoomario inhabiting open Pacific Ocean. In the case of H. moomario inhabiting in Tomini bay, such fresh water paralysis occurred $15-20$ hours after the transferring to the fresh water. Sea skaters inhabiting the open Ocean may be less resistant to fresh water than those living on Tomini Bay, because there are no effects of fresh water flowing from the rivers of lands. Even on the salinity of 11%, all the three species of sea skaters survived for similar hours to those on the higher salinity of $22-36 \%$. They can survive when they are exposed to the heavy rain and following very low salinity level of the surface layer of the sea.

In the cruise of KH-10-05 (Harada et al., 2010c: the cruise report), the fresh water shock occurred very quickly within $2-9$ hrs for in all adult specimens of H. micans from the Oceans and dead within 2 hrs thereafter. Significantly longer hours in survival were shown by the both species on $1 / 3$ or $2 / 3$ sea water than those on sea water. The longer hours in survival by oceanic sea skaters to "brackish waters" could be speculated to be adaptation to the occasional rain fall on the sea water film.

As a third aim of this study, another experiment is performed on oceanic sea skaters, Halobates micans and H. germanus inhabiting the Indian Ocean to know an exact threshold of higher limit to trig the leg paralysis due to lower salinity which can be named "low salinity shock". This experiment tries to clarify whether some relationship is between oceanic dynamics (for example, weather, precipitation, waves, salinity, air temperatures) in the day before the collection and survival days under several salinity levels and also the threshold to trig the "low salinity shock".
(3) Materials and Methods

Samplings

Samplings were performed in $27^{\text {th }}$ September- $22^{\text {nd }}$ October, 2011 with a Neuston NET (6 m long and with diameter of 1.3 m .)(Photo 1). The Neuston NET was trailed for $15 \mathrm{~mm} \times 3$ times on the sea surface at 17 stations in which 16 stations are around a point of $08^{\circ} 00^{\prime} \mathrm{S}, 080^{\circ} 30^{\prime} \mathrm{E}$ in tropical Indian Ocean on the starboard side of R/V MIRAI (8687t) which is owned by JAMSTEC (Japan Agency for Marine-earth Science and TECHnology). The trailing was performed for 15 min exclusively at night with the ship speed of 2.0 knot to the sea water (Photo 1). It was repeated 2 times in each station. Surface area which was swept by Neuston NET was evaluated as a expression of [flow-meter value x 1.3 m of width of the Neuston NET (Photo 1). All contents including sea skaters trapped in the pants (grey and plastic bottle (Photo 2) were transferred to a round-shaped transparent plastic aquarium (Photo 3). All sea skaters were picked up from the contents of the
aquarium.

Laboratory experiment

The sea skaters trapped in the pants were paralyzed with the physical shock due to the trailing of the NET. Such paralyzed sea skaters were transferred on the surface of paper towel (Photo 4) to respire. Some individuals could recover completely from the paralysis. Then, the paralysis of some ones was discontinued within 20 min . When sea skaters were trapped in the jelly of jelly fishes, the jelly was removed from the body of sea skaters very carefully and quickly by hand for the recovering out of the paralysis.

Adults and $3^{\text {rd }}$ to 5 th instars which recovered out of the paralysis were moved on the sea water in the aquarium set in the laboratory (Photo 5) for the Heat-Paralysis Experiments and measuring Super Cooling Points (Photo 6). Many white cube aquaria with $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ X 40 cm) were used in the laboratory of the ship for rearing of the adults and larvae which were recovered out of the paralysis due to the trailing. Each aquarium contained ten to twenty adults and/or larvae of Halobates. Both the room temperature and sea water temperature in the aquaria were kept at $29 \pm 2^{\circ} \mathrm{C}$. For about 9 hours after the collection, sea skaters were kept in the aquaria before the heat-paralysis experiment. All the individuals of Halobates which have been kept in the aquaria more than 12 hours after the collection were fed on adult flies, Lucillia illustris. When SCP was measured without being applied to heat coma experiment, specimen were kept starved more than 24 hours before the measurement. The transparent aquarium as the experimental arena has sea water with the same temperature (mostly 28 or $29^{\circ} \mathrm{C}$) as that of the aquarium to keep sea skaters. 4 to 11 individuals at adult or larval stage were moved to the transparent aquarium. Temperature was stepwise increased by $1^{\circ} \mathrm{C}$ every 1 hour till the high temperature paralysis occurring in all the experimental specimens. Four or five layers of cardboard were rapped around the round-shaped experimental aquarium and functioned as an insulator.
Temperature was very precisely controlled by handy on-off-switching to keep in $\pm 0.3{ }^{\circ} \mathrm{C}$ of the current water temperature. Handy-stirring with 10 cm air tube with 5 mm diameter and ball stone with 3 cm diameter was effective to keep the precise controlling of the current temperature. Sea skaters on the water surface of the aquarium were recorded with Digital Handy Video Camera (GZ-MG840-S: VICTOR) from above position for the last 10 min of each 1 hour under the current temperature. Temperature at which Semi Heat Coma (Heat Semi-Coma Temperature [HSCT]: little or no movement on the water surface more than 3 seconds) occurs and another temperature at which Heat Coma (Heat Coma Temperature [HCT]: ventral surface of the body was caught by sea water film and no ability to skate any more) occurs were recorded.

Determination of super cooling point (SCP)

Measurements of super cooling points and increasing temperature value at the moment of an exothermic event occurred in the body of the specimen (ITSCP: increased temperature at SCP) were performed for the specimen (mainly adults) paralyzed by high temperature of the two species of oceanic Halobates (H. micans, H. germanus) just after the heat paralysis experiment during this cruise. Some actively skating specimens were directly applied to the measurements of SCP and ITSCP without heat paralysis experiment to detect the effect of heating during the experiment on SCP and ITSCP.

Surface of each adult was dried with filter paper, and thermocouples which consist of nickel and bronze were attached to the abdominal surface of the thorax and connected to automatic temperature digital recorders (Digital Thermometer, Yokogawa Co, LTD, Model 10, Made in Japan). The thermocouple was completely fixed to be attached to the ventral surface of abdomen by a kind of Scotch tape. The specimen attached to thermocouples was placed into a compressed-Styrofoam box $\left(5 \times 5 \times 3 \mathrm{~cm}^{3}\right)$ which was again set inside another insulating larger compressed Styrofoam to ensure that the cooling rate was about $1^{\circ} \mathrm{C} / \mathrm{min}$ for recording the SCP in the freezer in which temperature was $-35^{\circ} \mathrm{C}$. The lowest temperature which reached before an exothermic event occurred due to release of latent heat was regarded as the SCP (Zhao \& Kang, 2000). All
tested specimen were killed by the body-freezing when SCP was determined.

Salinity experiment

The fifth instars and adults of H. micans collected during this cruise, MR-11-07-Leg 2 were used for the salinity experiment. All specimen (mostly adults) for Experiment 1-3 were moved on the sea water in the aquaria set in the wet laboratory in R/V Mirai (temperature was kept within $30.0 \pm 2 \mathrm{C}$). White cube aquaria with 30 cm X 30 cm X 40 cm) (Photo 2) were used for the experiments. Experimental specimens were moved to one of the 6 salinity conditions, brackish or fresh waters with six salinity concentrations (A: sea water, 10%, A': 9%, B: 8%, C: 6%, D: 4%, E: 2%, F: 0%).

All specimens were adults or $5^{\text {th }}$ instars of Halobates micans. Experimental specimens were kept more than 24 hours within 1 week after the collection and fed on the flies, Lucilia illustris (rate of one fly per 10 sea skaters per one day). After the transfer to one of 6 salinity conditions, whether the specimen were living and also whether they were in the legs-paralysis due to low salinity were checked every 1 hours without no food during being kept.
(4) Results and Discusssion

Population density and other Meteorological factors

The samplings of Halobates (Table 1) inhabiting two locations at $01^{\circ} 55^{\prime} \mathrm{S}, 083^{\circ} 24^{\prime} \mathrm{E}$ (Station 1) and $08^{\circ} 00^{\prime} \mathrm{S}$, $080^{\circ} 30^{\prime}$ E (Stations 2-17) in subtropical Indian Ocean showed that two species of Halobates micans and H.germanus inhabited in the tropical Indian Ocean,, although H. micans was dominant species. This result coincides with results of the past study (Andersen \& Cheng, 2004; Harada et al., 2011b). Table 2 shows a comparison of population density of Halobates species among three tropical sampling ranges in Indian and Pacific Oceans. At the fixed location of $08^{\circ} 00^{\prime} \mathrm{S}, 080^{\circ} 30^{\prime} \mathrm{E}$, one third of the density of H . micans can be estimated , compared with the density in relatively wide area of $8 \mathrm{~N}-6 \mathrm{~S}, 76-86 \mathrm{E}$ in the Indian Ocean. Probably the low activity of photosynthesis and relatively high oxygen consumption which can be suggested by low amount of chlorophyll in surface sea water in this fixed location may be related to relatively low density of Halobates, because low photosynthesis activity and high dissolved oxygen show extremely low amount of animals like as zooplankton and nekton which mean low amount of foods for sea skaters (Fig. 1).

Samplings at the fixed location at $08^{\circ} 00^{\prime} \mathrm{S}, 080^{\circ} 30^{\prime} \mathrm{E}$ showed that higher population density (20491.4 individuals $/ \mathrm{km}^{2}$) of Halobates micans was estimated at the stations where air temperature was $27.5^{\circ} \mathrm{C}$ than that (12070.9 individuals $/ \mathrm{km}^{2}$) in the stations at which air temp. was less than $27.5^{\circ} \mathrm{C}$ (Mann-Whitney U-test: $z=-2.614, p=0.009$)(Fig. 2). Similar result in the population density of larvae (481 larvae of H. micans and 70 ones of H. germanus were collected in total at Stations 1-17: Table 3) implies higher reproductive activity when the air temperature become higher than $27.5^{\circ} \mathrm{C}(\mathrm{z}=-2.935, \mathrm{p}=0.003)(\mathrm{Fig} .3)$.

Laboratory experiment

Heat semi-coma temperature (HSCT), heat coma temperature (HCT), gap temperature for heat coma (GTHC) super cooling point (SCP) and Increased temperature at super cooling point (ITSCP) were ranged 29 ${ }^{\circ} \mathrm{C}$ to $41^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C}$ to $41^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C}$ to $13^{\circ} \mathrm{C},-21.4^{\circ} \mathrm{C}$ to $-9.1^{\circ} \mathrm{C}$ and $0.5^{\circ} \mathrm{C}$ to $11.7 \mathrm{C}^{\circ}$, respectively (Table 4).

No significant correlation between HCT (or GTHC) and SCP was shown at all in H. micans and also H. germanus (Pearson's correlation test: $\mathrm{r}=-0.031, \mathrm{p}=0.901, \mathrm{n}=19$) (Fig. 4), whereas Harada et al (2010) showed that clear negative correlation was shown not by female-adults but by male-adults of H. sericeus in the area of $34^{\circ} 43^{\prime} \mathrm{N}, 140^{\circ} 14^{\prime} \mathrm{E}$ to $19^{\circ} 33^{\prime} \mathrm{N}, 164^{\circ} 44^{\prime} \mathrm{W}$ in the temperate and subtropical Pacific Ocean. On the other hand, in the area of $00^{\circ} 04^{\prime} \mathrm{N}-09^{\circ} 59^{\prime} \mathrm{N}, 146^{\circ} 59^{\prime} \mathrm{E}-156^{\circ} 20^{\prime} \mathrm{E}$ of the central tropical Pacific Ocean, adults of H. sericeus showed very clear and significant negative correlation (Pearson's correlation test: $r=-0.463, p=0.011$, n=26) (Harada et al., 2009). Such negative correlation between heat resistance and SCP might imply a
physiological cross tolerance between heat and cold hardiness, because SCP could be one index of cold hardiness. In the open ocean, only H. sericeus showed relatively clear correlation. This phenomenon may link to that only this species is "rider" on the several currents, especially "Kuroshio" current (Harada, submitted). Parallel physiological development of both cold and heat hardiness could be hypothesized to be evolved only this "rider sea skaters". However, many actual data to support this hypothesis are remained to be got currently.

Exceptionally high heat tolerance was shown in this area of $08^{\circ} 00^{\prime} \mathrm{S}, 80^{\circ} 30^{\prime} \mathrm{S}$ in the tropical Indian Ocean. Average of THP was abound $40 \mathrm{C}^{\circ}$ and $39 \mathrm{C}^{\circ}$ for H. germanus and H. micans (Tables 5-A,B,C). This high value by both species is much higher than that in any other subtropical and tropical open ocean area in Indian and Pacific Ocean (Harada et al., 2008; Harada et al., 2011b) by $3-5^{\circ} \mathrm{C}$. Such high heat resistance coincides with high heat coma temperature of $39 \mathrm{C}^{\circ}$ as average value at $06^{\circ} 25^{\prime} \mathrm{S}, 089^{\circ} 00^{\prime} \mathrm{E}$ in the tropical Indian Ocean (Harada et al., 2011b). Harada et al. (2011b) discuss on such extreme high heat resistance that currents get together from North and South in this area and some special temperature dynamics appearing here can be related to the extreme high temperature hardiness. The chief scientist of this cruise and a Meteorologist, Dr Kunio Yoneyama kindly gave us a very important comment that this fixed position of $08^{\circ} 00^{\prime} \mathrm{S}, 080^{\circ} 00^{\prime} \mathrm{E}$ is included in the special area of $5-10^{\circ} \mathrm{S}, 75^{\circ}-95^{\circ} \mathrm{E}$ where intra-seasonal temperature variation is highest in the world open oceans. This high resistance to high temperature shown by H. micans might be naturally selected within one generation which is proposed within 2-3 months or also over generations by such dynamic air and water temperatures around sea surface. However, the relationship between heat tolerance of sea skaters and meteorological data are currently remained to be analyzed for the near future.

After the application to the Heat Coma Experiment (HC exp.), super-cooling points shown by adults became significantly higher by $2^{\circ} \mathrm{C}$ than those by specimen without the application (Table 6). Heat stimulation during the HC exp. might increase the osmotic pressure of heamolymph up to the level of $-16^{\circ} \mathrm{C}$ of SCP as one speculation.

The relationship between heat hardiness and SCP, and several physical parameters (current speed, air temp., dissolved oxygen and chlorophyll from CTD data) in each day when sampling was performed should be also analyzed.

Salinity experiment

Most of the specimen at 10% and 9% and all specimen at $8-0 \%$ were under the paralysis of all six legs due to lower salinity concentration. However, the longer the time needed for the paralysis to be dead, the higher the salinity concentration. Due to similar experiments performed during the cruises of KH-09-07 and KH-10-05, similar survival duration among 36-12\% were shown in Halobates sp. and Halobates micans. Therefore, no sharp-critical response but instead gradual responses to salinity were shown between $10-0 \%$ for the survival days under starvation. Another threshold salinity concentration for triggering the paralysis due to lower salinity so called "low salinity shock" seems to be located between 12% and 10%.

(5) Additional Analyses

The data on field samplings in this study and environmental data on the oceanography during the cruise should be compared to the sampling data and related oceanography data in the area of $34^{\circ} 43^{\prime} \mathrm{N}-19^{\circ} 39^{\prime} \mathrm{N}$, $140^{\circ} 14^{\prime} \mathrm{E}-163^{\circ} 48^{\prime}$ W, in the Pacific Ocean at the cruise, $\mathrm{KH}-10-04-$ Leg 1, as well as those in the area of 4 S to 13 S and $8^{\circ} \mathrm{N}$ to $6^{\circ} \mathrm{S}$ in the Indian Ocean at two cruises, KH-10-05-Leg 1(Harada et al., 2010) and KH-07-04-Leg1 (Harada et al., 2008), respectively and those in the area of $30-35^{\circ} \mathrm{N}$ along the Kuroshio Current at the cruises, KT-07-19, KT-08-23, KT-09-20 and the other R/V TANSEIMARU cruises held in the past.

Cross tolerance between heat and cold hardiness was shown by Halobates inhabiting western tropical Pacific Ocean with 0-8N, 147-156E during the MR-09-04 and also shown by male Halobates sericeus in the cruise of KH-10-04-Leg 1. SCP measurement and heat paralysis experiment were done in the same manner during the cruise KT-09-20 in September, 2009. The relationship of the extent of the heat tolerance and SCP value should be analyzed to the ocean dynamics like as surface air and water temperature, dissolved oxygen and chlorophyll contents in the Pacific and Indian Ocean in the near future.

The video camera data will be also analyzed after the cruise to examine the frequency and speed of skating and their responses to the temperature differences. Dissection data (for example reproductive maturation), chemical contents data (example lipids) and gene data of MtDNA from Halobates samples should be analyzed in the future.

For the salinity experiments, raw data were shown in this report and all the statistical analyses should be done as soon as possible after the cruise.
(6) Data Archive

All data during this cruise will be submitted to the JAMSTEC Data Integration and Analysis Group (DIAG).

(7) Acknowledgements

We would like to thank Dr. KunioYONEYAMA (Head Scientist of the cruise: MR-11-07-Leg 1) and Dr. Masaki KATSUMATA (Head Scientist of the cruise: MR-11-07-Leg 2) for the permission of doing this study during the cruise on the R/V MIRAI, and also for their warm suggestion on ocean and atmosphere dynamics, and encouragement and help throughout this cruise. The samplings and the experimental study were also possible due to supports from all of the crew (Captain: Mr. Yasushi ISHIOKA) and all the scientists and the engineers and scientists from GODI (Global Ocean Development) and MWJ (Marine Work Japan) in this cruise. We would like to give special thanks to them.

(7) References

Andersen NM, Chen L 2004: The marine insect Halobates (Heteroptera: Gerridae): Biology, adaptations distribution, and phylogeny. Oceanography and Marine Biology: An Annual Review 42: 119-180.
Andersen NM, Polhemus JT 1976: Water-striders (Hemiptera: Gerridae, Vellidae, etc). In L. Cheng L. (ed): Marine Insects. North-Holland Publishing Company, Amsterdam, pp 187-224.
Bale JS 1987: Insect cold hardiness: freezing and supercooling- an ecophysiological perspective. J. Insect Physiol., 33: 899-908.
Bale JS 1993: Classes of Insect Cold Hardiness. Functional Ecol. 7: 751-753.
Bradley TJ 1987: Physiology of osmoregulation in mosquitoes. Annual Review of Entomology 32: 439-462.
Bradley TJ 1994: The role of physiological capacity, morphology and phylogeny in determining habitat use in mosquitoes. Ecological Morphology: Integrative Organisms Biology, pp. 303-318, University of Chicago Press, Chicago.
Carrillo MA, Heimpel GE, Moon RD, Cannon CA, Hutchison WD 2005: Cold hardiness of Habrobracon hebetor (Say) (Hymnoptera: Braconidae), a parasitoid of pyralid moths. J. Insect Physiol. 51: 759-768.
Cheng L 1985: Biology of Halobates (Heteroptera: Gerridae) Ann. Rev. Entomol. 30: 111-135.
Cheng L 1989: Factors limiting the distribution of Halobates species. In Reproduction, Genetics and Distribution of Marine Orgaminisms, J.S. Ryland \& P.A. Tyler (eds), Fredensbor, Denmark: Olsen \& Olsen, $23^{\text {rd }}$ European Marine Biology Symposium, pp. 357-362.
Cheng L 2003: Marine insects. In Resh VH \& Carde RT (eds), Encyclopedia of Insects, pp. 679-682, Academic

Press, San Diego.
Cheng L, Frank JH 1993: Marine insects and their reproduction. Oceanography and Marine Biology: An Annual Review 31: 479-506.
Harada T 2003: Hardiness to low temperature and drought in a water strider, Aquarius paludum in comparison with other insect groups Trends in Entomology(Research Trends, Trivandrum, India), 3: 29-41.
Harada T 2005: Geographical distribution of three oceanic Halobates spp. and an account of the behaviour of H. sericeus (Heteroptera: Gerridae). Eur. J. Entomol. 102: 299-302.

Harada T, Sekimoto T 2010: Distribution and tolerance to brackish and fresh water bodies as habitat in oceanic sea skater of Halobates (Heteroptera: Gerridae). The Cruise Report of KH-09-05-Leg 7.
Harada T, Ishibashi T, Inoue T 2006: Geographical distribution and heat-tolerance in three oceanic Halobates species (Heteroptera: Gerridae). The Cruise Report of KH-06-02-Leg 5.
Harada T, Sekimoto T, Osumi Y, Ishigaki H 2008: Geographical distribution in the Indian Ocean and heat-tolerance in the oceanic sea skaters of Halobates. (Heteroptera: Gerridae) and oceanic dynamics.. The Cruise Report of KH-07-04-Leg 1.
Harada T, Nakajyo M, Inoue T 2007: Geographical distribution in the western tropical Pacific Ocean and heat-tolerance in the oceanic sea skaters of Halobates. (Heteroptera: Gerridae) and oceanic dynamics. The Cruise Report of MR-06-05-Leg3.
Harada T, Iyota K, Sekimoto T 2010d: Distribution and tolerance to brackish water bodies as habitat in oceanic sea
Skater of Halobates (Heteroptera: Gerridae) inhabiting Tropical Indian Ocean. The Cruise Report of KH-10-05-Leg 1.
Harada T, Ikeda S, Ishibashi T 2010e: Cross tolerance between heat and cold stress by warm temperate Aquarius paludum paludum and subtropical Aquarius paludum amamiensis, semi-aguatic bugs (Gerridae, Heteroptera). Formosan Entomol., 30:87-101.
Harada T, Iyota K, Shiraki T, Katagiri C 2009: Distribution, heat-tolerance and super cooling point of the oceanic sea skaters of Halobates. (Heteroptera: Gerridae) inhabiting tropical area of western Pacific Ocean and oceanic dynamics. The Cruise Report of MR-09-04
Harada T, Iyota K, Osumi Y, Shiraki T, Sekimoto T 2010c: Distribution and tolerance to brackish and fresh water bodies as a habitat in oceanic sea skater of Halobates (Heteroptera: Gerridae) inhabiting Eastern \& Central Tropical Pacific Ocean. The Cruise Report of KH-10-04-Leg 2.
Harada T, Iyota K, Osumi Y, Shiraki T, Sekimloto T, Yokogawa S, Oguma K 2010b: Distribution, heat-tolerance and supercooling point of the oceanic sea skaters of Halobates (Heteroptera: Gerridae) inhabiting temperate and

Subtropical Pacific Oceean along the cruise track from Tokyo to Honolulu. The Cruise Report of KH-10-04-Leg 1.
Harada T, Takenaka S, Sekimoto T, Nakajyo M, Inoue T, Ishibashi T, Katagiri C 2011a: Heat coma as an indicator of resistance to environmental stress and its relationship to ocean dynamics in the sea skaters, Halobates (Heteroptera: Gerridae). Insect Sci., 18: in press.
Harada T, Sekimoto T, Iyota K, Shiraki T, Takenaka S, Nakajyo M, Osumi O and Katagiri C 2010a: Comparison of the Population Density of Oceanic Sea Skater of Halobates (Heteroptera: Gerridae) among Several Areas in the Tropical Pacific Ocean and the Tropical Indian Ocean. Formosan Entomol, 30: 307-316.
Harada T, Takenaka S, Sekimoto T, Ohsumi Y, Nakajyo M, Katagiri C 2011b: Heat coma and its relationship to ocean dynamics in the oceanic sea skaters of Halobates (Heteroptera: Gerridae) inhabiting Indian and Pacific Oceans. J. Thermal Biol., 36: 299-305.
Ikawa T, Okabe H, Hoshizaki S, Suzuki Y, Fuchi T, Cheng L 2002: Species composition and distribution of
ocean skaters Halobates (Hemiptera: Gerridae) in the western pacific ocean. Entomol. Sci. 5: 1-6.
Kishi M, Fujisaki K, Harada T 2006: How do water striders, Aquarius paludum, react to brackish-water simulated by NaCl solutions? Naturwissenschaften 93: 33-37.
Kishi M, Harada T, Fujisaki K 2007: Dispersal and reproductive responses of the water strider, Aquarius paludum (Hemiptera: Gerridae), to changing NaCl concentrations. Eur. J. Entomol. 104: 377-383.
Kishi M, Harada T, Fujisaki K 2009: Responses of life-history traits of brackish- and freshwater populations of the water strider to NaCl Aquarius paludum (Hemiptera: Gerridae). Eur. J. Entomol. 106: 43-48.
Kokkinn MJ 1986: Osmoregulation, salinity tolerance and the site of ion excretion in the halobiont chironomid, Tanytarsus baritarsis Freeman. Austarian Journal of Marine and Freshwater Researches 37: 243-250.
Liu ZD, Gong PY, Wu KJ, Wei W, Sun JH, Li DM 2007: Effects of larval host plants on over-wintering preparedness and survival of the cotton ballwarm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).
J. Insect Physiol. 53: 1016-1026.

Liu ZD, Gong PY, Heckel DG, Wei W, Sun JH, Li DM 2009: Effects of larval host plants on over-wintering physiological dynamics and survival of the cotton bollwarm, Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae). J. Insect Physiol. 55: 1-9.
Milonas P, Savopoulou-Soultani M 1999: Cold hardiness in diapause and non-diapause larvae of the summer fruit tortorix, Adoxophes orana (Lepidoptera: Tortricidae). Eur. J. Entomol. 96: 183-187.
Miyamoto S, Senta T 1960: Distribution, marine condition and other biological notes of marine water-striders, Halobates spp., in the south-western sea area of Kyushu and western area of Japan Sea. Sieboldia (In Japanese with English summary). 2:171-186.
Neumann D 1976: Adaptations of chironomids to intertidal environments. Annual Review of Entomology, 21: 387-414.
Stobbart RH, Shaw J 1974: Salt and water balance: excretion. The Physiology of Insecta,. pp. 362-446, Academic Press, New York.
Worland M. R. 2005: Factors that influence freezing in the sub-antarctic springtail Tullbergia antarctica. J. Insect Physiol. 51: 881-894.
Zhao YX, Kang L. 2000: Cold tolerance of the leafminer Liriomyza sativae (Dipt., Agromyzidae). J. Appl. Entomol. 124: 185-189.

Table 1-A. Number of Halobates collected at locations in the tropical Indian Ocean in Sep. 27, 2011 (N:Total number of individuals collected; H.m.: Halobates micans; H.g.: Halobates germanus; H.s.: Halobates sericeus; Stat: Station number; WT: Water temperature (${ }^{\circ} \mathrm{C}$); AT: Air temp.; L: N of larvae; A: N of adults, E: N of exuviae; Date: sampling date; Sampling was performed for 45 min . EG: eggs on some substrates like as polystyrene form thousands of eggs laid on the substrate. S: Surface area which was swept by Neuston NET was expressed as value of flow-meter x 1.3 m of width of Neuston NET; WS: wind speed (m / s); W: weather; TD: Time of day; WS: Wind speed, CS: Current speed $(\mathrm{m} / \mathrm{s}$)CD: Current direction; F: female; M: male; DO: dissolved oxygen ($\mu \mathrm{mol} / \mathrm{kg}$); Chl: Chlorophyll-A conc.(relative fluorescent value); SL: salinity (\%)

Latitude L	ngitude	N	L	A		H.m.	H.g.	H.s.	G	E	Stat W	WT	AT	ws	W	CS	CD	TD	Date S	S(x1.3 m${ }^{2}$)	DO	Chl	SL
				F	M																		
01 ${ }^{\circ} 55$ 'S	083 ${ }^{\circ} 24 \mathrm{E}$	7	0	1	6	4	3	0	0	0	St.1-1	29.0	27.9	5.2	Fine	0.9	130°	18:24~39 S	ep 27	804.0	189.340	0.955	32
$01^{\circ} 56$ 'S	$083{ }^{\circ} 24^{\prime} \mathrm{E}$	14	3	6	5	9	5	0	0	0	St.1-2	29.0	27.9	4.3	Fine	0.9	97°	18:43-58 S	Sep 27	767.0	189.340	0.955	32
0155'S	083 ${ }^{\circ} 4^{\prime}$ '	9	3	2	4	5	4	0	0	0	St.1-3	29.0	27.9	4.8	Fine	1.0	119°	19:03-18 S	Sep 27	801.0	189.34	0.955	32
08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 30^{\prime}$ E	4	2	1	1	2	2	0	0	0	St.2-1	28.4	26.7	5.0	Cloud	0.4	$311{ }^{\circ}$	20:34~49	Sep 30	615.0	189.04	1.190	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	0	0	0	0	0	0	0	0	2	St.2-2	28.4	26.7	4.4	Cloud	0.3	$266{ }^{\circ} 2$	20:53~21:08	Sep 30	503.0	189.04	1.190	32
08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	3	3	0	0	1	2	0	0	0	St.2-3	28.4	26.7	4.4	Cloud	0.3	$273{ }^{\circ}$	21:13~28	Sep 30	570.0	189.04	1.190	32
08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 9^{\prime}$ 'E	9	3	3	3	3	6	0	0	0	St.3-1	28.2	25.2	9.3	Rainy	0.4	$265{ }^{\circ} 20$	20:58~21:13	Oct 1	760.0	189.8	1.240	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 9^{\prime}$ 'E	10	5	4	1	9	1	0	0	0	St.3-2	28.2	25.2	11.2	Rainy	0.3	$269{ }^{\circ}$	21:20~35	Oct 1	656.0	189.8	1.240	32
08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ}{ }^{\prime} 9^{\prime}$ E	19	7	8	4	18	1	0	0	0	St.3-3	28.2	25.2	13.5	Rainy	0.4	$279{ }^{\circ}$	21:39~54	Oct 1	604.0	189.8	1.240	32
08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	11	9	1	1	7	4	0	0	0	St.4-1	28.5	27.8	8.6	F/C	0.7	141°	20:56~21:11	1 Oct 3	656.0	189.62	0.63	31
08 ${ }^{\circ} 00$ 'S	080º'30'E	20	15	2	3	15	5	0	0	0	St.4-2	28.5	27.8	7.8	F/C	0.7	155°	21:16~31	Oct 3	663.0	189.62	0.63	31
08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 30^{\prime}$ E	65	10	9	46	62	3	0	0	0	St.4-3	28.5	27.8	8.0	F/C	0.8	$158{ }^{\circ}$	21:35~50	Oct 3	667.0	189.62	0.63	31
08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 9^{\prime}$ 'E	21	11	7	3	19	2	0	0	0	St.5-1	28.5	25.4	4.7	Rainy		$209{ }^{\circ} 2$	20:50~21:05	5 Oct 4	569.0	189.45	0.84	32
08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 30^{\prime}$ E	22	11	8	3	20	2	0	0	1	St.5-2	28.5	25.4	8.6	Rainy	0.1	152°	21:10~25	Oct 4	504.0	189.45	0.84	32
08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	84	68	10	6	64	20	0	0	3	St.5-3	28.5	25.4	9.5	Rainy	0.5	$176{ }^{\circ}$	21:29~44	Oct 4	601.0	189.45	0.84	32
07${ }^{\circ} 59^{\prime}$ S	080 ${ }^{\circ} 9^{\prime}$ E	6	4	1	1	3	3	0	0	0	St.6-1	28.4	26.7	10.4	C/R	0.9	$185{ }^{\circ}$	20:54-21:09	9 Oct 6	662.0	189.85	0.67	32
0800'S	$080{ }^{\circ} 29^{\prime}$ E	11	9	1	1	7	4	0	0	0	St.6-2	28.4	26.7	9.2	C/R	0.7	$189{ }^{\circ}$	21:13-28	Oct 6	690.0	189.85	0.67	32

08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	7	6	1	0	7	0	0	0	0	St.6-3	28.4	26.7	7.5	C/R	0.7	$206{ }^{\circ}$	21:33-48	Oct 6	552.0	189.85	0.67	32
07 ${ }^{\circ} 59$ 'S	$080{ }^{\circ} 29^{\prime}$ E	10	7	0	3	3	7	0	0	0	St.7-1	28.5	27.4	4.2	Fine	0.2	$154{ }^{\circ}$	20: 49-21:04	O4 Oct 7	787.0	189.46	0.56	32
08 ${ }^{\circ} 00^{\prime}$ S	$080^{\circ} 30^{\prime}$ E	9	6	1	2	4	5	0	0	0	St.7-2	28.5	27.4	4.1	Fine	0.3	$121{ }^{\circ}$	21: 09-24	Oct 7	594.0	189.46	0.56	32
08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	6	4	1	1	3	3	0	0	0	St.7-3	28.5	27.4	4.4	Fine	0.4	$129{ }^{\circ}$	21:29-44	Oct 7	621.0	189.46	0.56	32
07º59'S	$080{ }^{\circ} 29^{\prime}$ E	15	12	1	2	12	3	0	0	0	St.8-1	28.5	26.8	6.5	Fine	0.4	230°	20:49~21:04	4 Oct 9	766.0	189.92	1.23	32
0800'S	080 ${ }^{\circ} 29^{\prime}$ E	11	8	0	3	9	2	0	0	1	St.8-2	28.5	26.8	6.2	Fine	0.5	$221{ }^{\circ}$	21:09~24	Oct 968	684.01	189.921	1.23	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080^{\circ} 29^{\prime}$ E	9	7	1	1	6	3	0	0	2	St.8-3	28.5	26.8	8.2	Fine	0.5	$208{ }^{\circ}$	21:29~44	Oct 9	582.0	189.92	1.23	32
0759'S	$080{ }^{\circ} 29^{\prime}$ E	3	2	0	1	3	0	0	0	0	St.9-1	28.3	27.3	12.7	Cloudy		179°	20:51~21:0	06 Oct10	708.0	192.10	2.08	32
0800'S	080 ${ }^{\circ} 29^{\prime} \mathrm{E}$	14	8	2	4	14	0	0	0	1	St.9-2	28.3	27.3	12.0	Cloudy		$206{ }^{\circ}$	21:11~26	Oct 10	698.0	192.10	2.08	32
$\underline{08} 0{ }^{\circ} \mathrm{S}$ S	$080{ }^{\circ} 29^{\prime}$ E	7	5	1	1	6	1	0	0	0	St.9-3	28.3	27.3	12.5	Cloudy		196 ${ }^{\circ}$	21:30~45	Oct 10	595.0	0192.10	2.08	32

Table 1-B. Number of Halobates collected at locations in the tropical Indian Ocean in Sep. 27, 2011 (N:Total number of individuals collected; H.m.: Halobates micans; H.g.: Halobates germanus; H.s.: Halobates sericeus; Stat: Station number; WT: Water temperature (${ }^{\circ} \mathrm{C}$); AT: Air temp.; L: N of larvae; A: N of adults, E: N of exuviae; Date: sampling date; Sampling was performed for 45 min . EG: eggs on some substrates like as polystyrene form thousands of eggs laid on the substrate. S: Surface area which was swept by Neuston NET was expressed as value of flow-meter x 1.3 m of width of Neuston NET; WS: wind speed (m / s); W: weather; TD: Time of day; WS: Wind speed, CS: Current speed $(\mathrm{m} / \mathrm{s}) \mathrm{CD}$: Current direction; F: female; M: male; DO: dissolved oxygen ($\mu \mathrm{mol} / \mathrm{kg}$); Chl: Chlorophyll-A conc.(relative fluorescent value); SL: salinity (\%)

Latitude Longitude	N	L		A	H.m.	H.g.		EG	E	Stat WT	AT	ws	W	CS	CD	TD	Date S	S(x1.3 m²)	DO	Chl	SL
			F	M																	
07 ${ }^{\circ} 59^{\prime}$ S $080{ }^{\circ} 29^{\prime}$ E	23	17	5	1	23	0	0	0	2	St.10-1 28.2	27.7	11.6	Fine	0.8	$231{ }^{\circ}$	20:55~21:10	Oct 12	688.0	189.12	1.08	32
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 29^{\prime}$ E	16	12	3	1	12	4	0	0	3	St.10-2 28.2	27.7	10.8	Fine	0.4	$193{ }^{\circ}$	21:15~30	Oct 12	622.0	189.12	1.08	32
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 29^{\prime}$ E	32	20	6	6	32	0	0	0	0	St.10-3 28.2	27.7	11.4	Fine	0.4	$191{ }^{\circ}$	21:35~50	Oct 12	602.0	189.12	1.08	32
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 29^{\prime}$ E	15	9	5	1	13	2	0	0	0	St.11-1 28.2	27.5	9.6	Fine	0.4	197°	20:53~21:08	Oct 13	612.0	189.03	0.695	32
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 29^{\prime} \mathrm{E}$	10	7	1	2	10	0	0	0	0	St.11-2 28.2	27.5	9.5	Fine	0.5	$219{ }^{\circ}$	21:14-29	Oct 13	592.0	189.03	0.695	32
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 30^{\prime}$ E	13	13	0	0	12	1	0	0	2	St.11-3 28.2	27.5	10.9	Fine	0.3	$204{ }^{\circ}$	21:34-49	Oct 13	554.0	189.03	0.695	32
07 ${ }^{\circ} 59{ }^{\prime}$ S $080{ }^{\circ} 29^{\prime}$ E	19	15	1	3	19	0	0	0	0	St.12-1 28.4	27.9	9.1	Fine	0.8	$184{ }^{\circ}$	20:51~21:0 6	6 Oct 15	593.0	188.75	0.405	32

08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 29^{\prime}$ E	13	10	1	2	13	0	0	0	0	St．12－2 28.4	27.9	8.6	Fine	0.8	185 ${ }^{\circ}$ 21：10～25	Oct 15	658.0	188.75	0.405	32
08 ${ }^{\circ} 01^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	14	12	2	0	14	0	0	0	2	St．12－3 28.4	27.9	10.0	Fine	0.8	183 ${ }^{\circ}$ 21：30～45	Oct 15	698.0	188.75	0.405	32
07 ${ }^{\circ} 59^{\prime}$ S 080 ${ }^{\circ} 29^{\prime}$ E	12	10	1	1	12	0	0	0	0	St．13－1 28.4	27.9	13.0	Fine	0.3	214 ${ }^{\circ}$ 20：55～21：10	Oct 16	623.0	188.58	0.475	32
08 ${ }^{\circ} 0{ }^{\prime}$ S $080{ }^{\circ} 29^{\prime} \mathrm{E}$	20	16	1	3	19	1	0	0	1	St．13－2 28.4	27.9	11.8	Fine	0.2	190° 21：15～30	Oct 16	625.0	188.58	0.475	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	23	19	1	3	21	2	0	0	0	St．13－3 28.4	27.9	11.5	Fine	0.4	193 ${ }^{\circ}$ 21：35～50	Oct 16	654.0	188.58	0.475	32
0759＇S ${ }^{\text {080 }}{ }^{\circ}{ }^{\circ} 9^{\prime}$ E	5	4	0	1	5	0	0	0	0	St．14－1 28.4	27.6	9.8	Fine	0.5	244 ${ }^{\circ}$ 20：54～21：09	Oct 18	641.0	187.86	0.575	32
	22	16	4	2	22	0	0	0	1	St．14－2 28.4	27.6	9.6	Fine	0.5	224 ${ }^{\circ}$ 21：14～29	Oct 18	688.0	187.86	0.575	32
08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 30^{\prime} \mathrm{E}$	8	7	1	0	8	0	0	0	0	St．14－3 28.4	27.6	11.2	Fine	0.5	246 ${ }^{\circ}$ 21：33～48	Oct 18	645.0	187.86	0.575	
0759＇S $080{ }^{\circ} 30^{\prime} \mathrm{E}$	11	10	1	0	11	0	0	0	0	St．15－1 28.3	27.7	5.9	Fine	0.2	213 ${ }^{\circ}$ 20：55～21：10	Oct 19	663.0	187.91	0.43	32
07 $59{ }^{\prime}$ S $080{ }^{\circ} 30^{\prime}$ E	18	16	1	1	17	1	0	0	0	St．15－2 28.3	27.7	7.7	Fine	0.4	254 ${ }^{\circ} \mathbf{2 1 : 1 5 \sim 3 0}$	Oct 19	678.0	187.91	0.43	32
	22	18	3	1	22	0	0	0	0	St．15－3 28.3	27.7	5.8	Fine	0.3	249 ${ }^{\circ}$ 21：35～50	Oct 19	632.0	187.91	0.43	32
07 ${ }^{\circ} 59{ }^{\prime} \mathrm{S} \mathrm{080}{ }^{\circ} 30^{\prime} \mathrm{E}$	18	16	2	0	18	0	0	0	2	St．16－1 28.6	27.9	4.9	Fine	0.7	259 ${ }^{\circ}$ 21：00－15	Oct 21	790.0	188.72	0.28	32
07 $59 ⿳ ⺈ ⿴ 囗 十 大$ 080 ${ }^{\circ} 29^{\prime}$ E	17	16	1	0	17	0	0	0	1	St．16－2 28.6	27.9	5.8	Fine	0.5	274 ${ }^{\circ}$ 21：20－35	Oct 21	823.0	188.72	0.28	32
08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S} 080{ }^{\circ} 29^{\prime}$ E	38	34	3	1	34	4	0	0	3	St．16－3 28.6	27.9	4.4	Fine	0.8	250 ${ }^{\circ}$ 21：40－55	Oct 21	850.0	188.72	0.28	32
07 $59^{\prime} \mathrm{S} 080{ }^{\circ} 29^{\prime}$ E	7	5	0	2	6	1	0	0	0	St．17－1 28.8	27.7	5.5	Fine	0.4	230 ${ }^{\circ}$ 20：53～21：0	08 Oct 22	834.0	186.22	0.22	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 29^{\prime} \mathrm{E}$	13	11	2	0	12	1	0	0	1	St．17－2 28.8	27.7	3.9	Fine	0.6	233 ${ }^{\circ}$ 21：13～28	Oct 22	664.0	186.22	0.22	32
$\underline{08} 00^{\prime} \mathrm{S}$ 080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	11	10	0	1	10	1	0	0	2	St．17－328．8	27.7	5.1	Fine	0.3	249 ${ }^{\circ}$ 21：33～48	Oct 22	631.0	186.22	0.22	32

Table 1－C．Number of Halobates collected at locations in the tropical Indian Ocean in Sep．27， 2011 （N：Total number of individuals collected；H．m．：Halobates micans；H．g．：Halobates germanus；H．s．：Halobates sericeus；Stat：Station number；WT：Water temperature（ ${ }^{\circ} \mathrm{C}$ ）；AT：Air temp．；L：N of larvae；A：N of adults，E：N of exuviae；Date：sampling date；Sampling was performed for 45 min ．EG：eggs on some substrates like as polystyrene form thousands of eggs laid on the substrate． S：Surface area which was swept by Neuston NET was expressed as value of flow－meter x 1.3 m of width of Neuston NET；WS：wind speed（ m / s ）；W：weather；TD： Time of day；WS：Wind speed，CS：Current speed（m／s）CD：Current direction；F：female；M：male；DO：dissolved oxygen（ $\mu \mathrm{mol} / \mathrm{kg}$ ）；Chl：Chlorophyll－A conc．（relative fluorescent value）；SL：salinity（\％）

$08^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	5	4	1	0	0	5	0	0	0	1	St.18-1 28.4	27.9	5.6	Fine	0.61	$109{ }^{\circ}$	20:55~21:10	Oct 31	831.0	186.78	0.43	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	1	0	0	0	1	0	0	0	1	St.18-2 28.4	27.9	6.4	Fine	0.8	$108{ }^{\circ}$	21:15~30	Oct 31	762.0	186.78	0.43	32
08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 31^{\prime} \mathrm{E}$	3	1	1	1	1	3	0	0	0	0	St.18-3 28.4	27.9	5.4	Fine	0.6	$109{ }^{\circ}$	21:35~50	Oct 31	809.0	186.78	0.43	32
08 ${ }^{\circ} 01^{\prime} \mathrm{S} 080^{\circ} 30^{\prime} \mathrm{E}$	7	7	0	0	0	6	1	0	0	0	.19-1 28.4	27.9	6.2	Fine	0.3	141°	20:52~21:07	Nov 1	766.0	186.98	0.45	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	9	7	2	2	0	9	0	0	0	1	St.19-2 28.4	27.9	8.1	Fine	0.5	145°	21:15-30	Nov 1	792.0	186.98	0.45	32
08 ${ }^{\circ} 01^{\prime}$ S $080^{\circ} 30^{\prime} \mathrm{E}$	13	7	3	3	3	11	2	0	0	1	St.19-3 28.4	27.9	7.3	Fine	1.2	$144{ }^{\circ}$	21:35-50	Nov 1	802.0	186.98	0.45	32
08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 30^{\prime} \mathrm{E}$	19	15	1		3	19	0	0	0	2	.20-1 28.5	27.5	7.7	F/R	0.3	$101{ }^{\circ} 2$	20:58~21:13	Nov 2	796.0	187.30	0.46	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	10	3	4		3	10	0	0	0	1	St. 20-2 28.5	27.5	8.0	F/R	0.4	$114{ }^{\circ}$	21:18~33	Nov 2	767.0	187.30	0.46	32
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 31^{\prime} \mathrm{E}$	13	10	2	1		12	1	0	0	0	St. 20-3 28.5	27.5	11.0	F/R	0.9	120°	21:38~53	Nov 2	754.0	187.30	0.46	32
$08^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	2	0	0		3	0	0	0	1	St.21-1 28.4	27.8	6.6	Fine	0.1		${ }^{\circ}$ 20:57~21:12	2 Nov 3	758.0	187.83	0.4131	31
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 30^{\prime} \mathrm{E}$	6	2	3	31		6	0	0	0	0	St.21-2 28.4	27.8	6.4	Fine	0.4	202°	21:16~31	Nov 3	650.0	187.83	0.4131	31
$08^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 31^{\prime} \mathrm{E}$	7	5	2	0	0	7	0	0	0	0	St.21-3 28.4	27.8	6.6	Fine	0.9	$194{ }^{\circ}$	${ }^{\circ}$ 21:36~51	Nov 3	585.0	187.83	0.4131	31
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 30^{\prime} \mathrm{E}$	5	5	0	0	0	5	0	0	0	2	St.22-1 28.4	27.7	4.2	Fine	0.3	$179{ }^{\circ}$	º 20:56~21:11	1 Nov 4	745.0	188.00	0.44	32
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	1	0	2		3	0	0	0	0	St.22-2 28.4	27.7	7.3	Fine	0.4	167°	21:16~31	Nov 4	788.0	188.00	0.44 3	32
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 31^{\prime} \mathrm{E}$	4	4	0	0		3	1	0	0	0	St.22-3 28.4	27.7	9.2	Fine	0.3		21:35~50	Nov 4	604.0	188.00	0.44 3	32
$08^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	12	8	2		2	12	0	0	0	1	St.23-1 28.4	27.6	8.2	F/R	0.1	230°	20:53~21:08	Nov 5	741.0	188.10	0.38	32
0759'S 080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	6	3	1		2	6	0	0	0	0	St.23-2 28.4	27.6	7.4	F/R	R 0.3	$3 \quad 197{ }^{\circ}$	7° 21:15~30	Nov 5	655.0	188.10	0.38	32
08 ${ }^{\circ} 00^{\prime}$ S 080 ${ }^{\circ} 30^{\prime}$ E	11	9	1	1	1	10	1	0	0	1	St.23-3 28.4	27.6	9.5	F/R	R 0.2	$2137{ }^{\circ}$	$7^{\circ} 21: 35 \sim 50$	Nov 5	754.0	188.10	0.38	32
$08^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 29^{\prime} \mathrm{E}$	9	8	0		1	9	0	0	0	0	St.24-1 28.4	27.6	5.7	Fine		$7259{ }^{\circ}$	20:54-21:09	Nov 6	779.0	188.00	0.33	32
$08^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	8	7	1		0	8	0	0	0	0	St.24-2 28.4	27.6	7.5	Fine	0.5	$274{ }^{\circ}$	21:14-29	Nov 6	774.0	188.00	0.33	32
$08^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 31^{\prime} \mathrm{E}$	6	3	2	1		6	0	0	0	0	St.24-3 28.4	27.6	7.9	Fine	0.8	$250{ }^{\circ}$	21:34-49	Nov 6	784.0	- 188.00	00.33	32
$08^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	7	4	1	2		7	0	0	0	0	St.25-1 28.4	27.9	9.6	Fine	0.4	$265{ }^{\circ}$	20:52~21:07	Nov 8	704.0	187.82	0.33	31
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 29^{\prime} \mathrm{E}$	12	10	1	1		12	0	0	0	0	St.25-2 28.4	27.9	8.3	Fine	0.2	217°	21:11~26	Nov 8	904.0	187.82	0.33	31
$\underline{08}{ }^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	6	2	3	31	1	6	0	0	0	0	St.25-3 28.4	27.9	9.8	Fine	0.4	$211^{\circ} 2$	21:31~46	Nov 8	801.0	187.82	20.33	31

Table 1-D. Number of Halobates collected at locations in the tropical Indian Ocean in Sep. 27, 2011 (N:Total number of individuals collected; H.m.: Halobates
micans; H.g.: Halobates germanus; H.s.: Halobates sericeus; Stat: Station number; WT: Water temperature ($\left.{ }^{\circ} \mathrm{C}\right)$; AT: Air temp.; L: N of larvae; A: N of adults, E: N of exuviae; Date: sampling date; Sampling was performed for 45 min . EG: eggs on some substrates like as polystyrene form thousands of eggs laid on the substrate. S: Surface area which was swept by Neuston NET was expressed as value of flow-meter x 1.3 m of width of Neuston NET; WS: wind speed (m / s); W: weather; TD: Time of day; WS: Wind speed, CS: Current $\operatorname{speed}(\mathrm{m} / \mathrm{s}) \mathrm{CD}$: Current direction; F: female; M: male; DO: dissolved oxygen ($\mu \mathrm{mol} / \mathrm{kg}$); Chl: Chlorophyll-A conc.(relative fluorescent value); SL: salinity (\%)

F M

$08^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	17	10	3	4	16	1	0	0	0	St.32-2 28.4	28.0	10.2	F/R	0.9	262 ${ }^{\circ}$ 21:14-29	Nov 18	1030.0	188.67	0.3032	
08 ${ }^{\circ} 01^{\prime} \mathrm{S} 080^{\circ} 2^{\prime}{ }^{\prime} \mathrm{E}$	9	3	3	3	9	0	0	0	0	St.32-3 28.4	28.0	9.3	F/R	0.9	269 ${ }^{\circ}$ 21:45-22:00	Nov 18	665.0	188.67	0.30	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 30^{\prime} \mathrm{E}$	15	9	3	3	15	0	0	0	1	St.33-1 28.4	27.7	7.1	Fine	0.4	265 ${ }^{\circ}$ 20:54~21:09	Nov 20	720.0	188.71	0.27	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	24	12	5	7	23	1	0	0	0	St.33-2 28.4	27.7	6.9	Fine	0.5	262 ${ }^{\circ}$ 21:14~29	Nov 20	788.0	188.71	0.27	32

Table 1-E. Number of Halobates collected at locations in the tropical Indian Ocean in Sep. 27, 2011 (N:Total number of individuals collected; H.m.: Halobates micans; H.g.: Halobates germanus; H.s.: Halobates sericeus; Stat: Station number; WT: Water temperature (${ }^{\circ} \mathrm{C}$); AT: Air temp.; L: N of larvae; A: N of adults, E: N of exuviae; Date: sampling date; Sampling was performed for 45 min . EG: eggs on some substrates like as polystyrene form thousands of eggs laid on the substrate. S: Surface area which was swept by Neuston NET was expressed as value of flow-meter x 1.3 m of width of Neuston NET; WS: wind speed (m / s); W: weather; TD: Time of day; WS: Wind speed, CS: Current speed $(\mathrm{m} / \mathrm{s}) \mathrm{CD}$: Current direction; F: female; M: male; DO: dissolved oxygen ($\mu \mathrm{mol} / \mathrm{kg}$); Chl: Chlorophyll-A conc.(relative fluorescent value); SL: salinity (\%)

Latitude Longitude	N	L		A	H.m.	H.g.		s. EG	E	Stat WT	AT		S W	CS	CD	TD	Date S	$\mathrm{S}\left(\mathrm{x} 1.3 \mathrm{~m}^{2}\right)$	DO	Chl	SL
			F	M																	
08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$ 080 ${ }^{\circ} 29^{\prime}$ E	6	5	1	0	6	0	0	0	0	St.34-1 28.2	27.5	4.5	Fine	0.8	$292{ }^{\circ}$	20:52~21:0	7 Nov 21	864.0	189.4	0.33	31
08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	0	0	3	0	0	0	0	St.34-2 28.2	27.5	5.4	Fine	0.7	$301{ }^{\circ}$	21:12~27	Nov 21	723.0	189.4	0.33	31
08 ${ }^{\circ} 0{ }^{\prime}$ S $080{ }^{\circ} 30^{\prime} \mathrm{E}$	5	4	1	0	4	1	0	0	1	St.34-3 28.2	27.5	5.3	Fine	0.7	$268{ }^{\circ}$	21:31~46	Nov 21	584.0	189.4	0.33	31
08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30 \times$	10	7	2	1	0	0	0	0	0	St.35-1 28.4	27.5	5.8	Fine	0.6	$254^{\circ} \quad 2$	20:51~21:07	Nov 23	848.0	189.42	0.40	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	8	6	2	0	0	0	0	0	1	St.35-2 28.4	27.5	5.5	Fine	0.5	$263{ }^{\circ}$	21:10-25	Nov 23	688.0	189.42	0.40	32
08 ${ }^{\circ} 01$ 'S $080{ }^{\circ} 30^{\prime}$ E	5	4	1	0	5	0	0	0	0	St.35-3 28.4	27.5	6.0	Fine	0.6	$256{ }^{\circ}$	21:29-44	Nov 23	708.0	189.42	0.40	32
08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 30^{\prime} \mathrm{E}$	16	9	5	2	16	0	0	0	1	St.36-1 28.2	27.9	6.2	Fine	0.7	$296{ }^{\circ} 20$	20:52~21:07	Nov 24	763.0	189.28	0.48	32
08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 29^{\prime}$ E	13	5	3	5	13	0	0	0	0	St. 36-2 28.2	27.9	7.0	Fine	0.9	$296{ }^{\circ}$	21:11~26	Nov 24	583.0	189.28	0.48	32
08 ${ }^{\circ} 01^{\prime} \mathrm{S} 080{ }^{\circ} 29^{\prime} \mathrm{E}$	14	4	6	4	$14 \quad 0$	00)		St. 36-3 28.2	27.9	7.7	Fine 0	0.6	$298{ }^{\circ}$	21:31~46	Nov 24	562.0	189.28	0.48	32

Table 2: A comparison of population density of oceanic sea skaters, Halobates among three area of open Indian
and Pacific Oceans. Samplings were performed the three cruises including this cruise. H.m: Halobates micans;
H.q.: H. germanus; H.s.: H. sericeus; H.p.: H. princeps; sp.: H. sp.: Density: individual number/km²

1. MR-10-03: Western Tropical Pacific Ocean, $5^{\circ} \mathrm{N}, 139^{\circ} 30^{\prime}$ E (Harada et al., 2010)

	Total		H.m	H.g	H. s.	H. p or sp	$\mathrm{AS}^{\#}$
	Nymphs	Adults					
Number	3772	383	4059	66	1	28	0.105310
Density	35834.0	3638.5	38560.5	627.0	9.5	266.0	-

2.KH-07-04-Leg 1: Eastern Tropical Indian Ocean, $8^{\circ} \mathrm{N}-6^{\circ} 35^{\prime} \mathrm{S}, 86^{\circ} \mathrm{E}-76^{\circ} 36^{\prime} \mathrm{E}$) (Harada et al., 2010)

Total		H.m	. 9	H. s.	H. p or sp	$\mathrm{AS}^{\#}$
Nymphs	Adults					
1291	706	1886	111	0	0	0.044292
29147.5	15939.7	42581.1	2506.1	0	0	-

3. MR-11-07-Leg 1 (this cruise, Stations 1-17): Eastern Tropical Indian Ocean, $01^{\circ} 55^{\prime} \mathrm{S}, 083^{\circ} 24 \mathrm{E} 8^{\circ} \mathrm{S}, 80^{\circ} 30^{\prime} \mathrm{E}$)

	Total		H.m	H.g	H. s.	H. p or sp	$\mathrm{AS}^{\#}$
	Nymphs	Adults					
Number	551	255	697	109	0	0	0.0438607
Density	12562.5	5813.9	15891.2	2485.1	0	0	-

Table 3-A. Components of instars of larvae and adults of oceanic sea skaters, Halobates micans and H. germanus sampled at $01^{\circ} 55^{\circ} \mathrm{S}, 083^{\circ} 24 \mathrm{E}$ (St 1) and around $80^{\circ} 00^{\prime} \mathrm{S}, 080^{\circ} 30^{\prime} \mathrm{E}(\mathrm{St} 2$ to St 10$)$ in the tropical Indian Ocean.

St8-3	1	1	1	2	0	0	1	0	0	0	1	1	1	0
St9-1	0	0	0	1	1	0	1	0	0	0	0	0	0	0
St9-2	1	2	1	1	3	2	4	0	0	0	0	0	0	0
St9-3	0	0	0	0	4	1	1	0	0	0	0	1	0	0
St10-1	2	3	6	2	4	5	1	0	0	0	0	0	0	0
St10-2	0	2	2	1	4	2	1	0	0	1	0	2	1	0
St10-3	2	3	0	9	6	6	6	0	0	0	0	0	0	0

Table 3-B. Components of instars of larvae and adults of oceanic sea skaters, Halobates micans and H. germanus sampled at around $08^{\circ} 00^{\prime} \mathrm{S}, 080^{\circ} 30^{\prime} \mathrm{E}$ in the tropical Indian Ocean.

$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$		Adults			$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	Adults				
				$5^{\text {th }}$	F	M						$5^{\text {th }}$	F	M		
St.11-1		2	2	3	1	1	3	1		0	0	0	0	0	2	0
St.11-2		0	1	3	3	0	1	2		0	0	0	0	0	0	0
St.11-3		1	4	3	1	3	0	0		0	0	0	0	1	0	0
St.12-1		2	1	2	8	2	1	3		0	0	0	0	0	0	0
St.12-2		0	1	3	3	3	1	2		0	0	0	0	0	0	0
St.12-3		2	2	3	1	4	2	0		0	0	0	0	0	0	0
St.13-1		0	1	0	2	7	1	1		0	0	0	0	0	0	0
St.13-2		0	2	1	4	8	1	3		0	0	1	0	0	0	0
St.13-3		0	3	3	5	6	1	3		0	0	0	0	2	0	0
St.14-1		0	1	1	2	0	0	1		0	0	0	0	0	0	0
St.14-2		0	4	4	6	2	4	2		0	0	0	0	0	0	0
St.14-3		1	2	2	1	1	1	0		0	0	0	0	0	0	0
St.15-1		2	2	3	1	2	1	0		0	0	0	0	0	0	0
										5.26-						

St.15-2	2	9	4	0	1	1	0	0	0	0	0	0	0	1
St.15-3	0	3	9	3	3	3	1	0	0	0	0	0	0	0
St.16-1	0	5	3	4	4	2	0	0	0	0	0	0	0	0
St.16-2	1	2	4	5	4	1	0	0	0	0	0	0	0	0
St.16-3	4	10	10	6	2	2	0	0	1	0	0	1	1	1
St.17-1	0	1	0	1	2	0	2	0	0	0	0	1	0	0
St.17-2	0	2	4	3	2	1	0	0	0	0	0	0	1	0
St.17-3	1	2	3	2	2	0	0	0	0	0	0	0	0	1
St.18-1	1	1	2	0	0	1	0	0	0	0	0	0	0	0
St.18-2	0	0	1	0	0	0	0	0	0	0	0	0	0	0
St.18-3	0	0	1	0	0	1	1	0	0	0	0	0	0	0
St.19-1	0	1	1	3	1	0	0	1	0	0	0	0	0	0
St.19-2	1	2	2	1	1	2	0	0	0	0	0	0	0	0
St.19-3	0	1	3	1	0	3	3	0	1	1	0	0	0	0
St.20-1	0	0	1	2	1	0	0	0	0	0	0	0	0	0
St.20-2	0	1	1	1	0	4	3	0	0	0	0	0	0	0
St.20-3	1	3	4	1	0	2	1	0	0	1	0	0	0	0

Table 3-C. Components of instars of larvae and adults of oceanic sea skaters, Halobates micans and H. germanus sampled
at around $08^{\circ} 00^{\prime} \mathrm{S}, 080^{\circ} 30^{\prime} \mathrm{E}$ in the tropical Indian Ocean. Halobates micans
H. germanus

St.22-1	1	2	2	0	0	0	0	0	0	0	0	0	0	0
St.22-2	0	0	1	0	0	0	2	0	0	0	0	0	0	0
St.22-3	0	1	0	2	0	0	0	0	0	0	1	0	0	0
St.23-1	0	5	2	1	0	2	2	0	0	0	0	0	0	0
St.23-2	0	1	0	2	2	1	2	0	0	0	0	0	0	0
St.23-3	1	2	3	0	2	1	1	0	0	1	0	0	0	0
St.24-1	1	3	2	2	0	0	1	0	0	0	0	0	0	0
St.24-2	1	0	3	1	2	1	0	0	0	0	0	0	0	0
St.24-3	1	0	1	0	1	2	1	0	0	0	0	0	0	0
St.25-1	0	0	0	4	0	1	2	0	0	0	0	0	0	0
St.25-2	2	1	2	2	3	1	1	0	0	0	0	0	0	0
St.25-3	0	0	1	1	0	3	1	0	0	0	0	0	0	0
St.26-1	2	3	8	4	1	4	4	0	0	0	0	0	0	0
St.26-2	1	4	9	7	3	2	3	0	0	0	0	0	0	0
St.26-3	2	6	16	8	0	0	0	0	0	0	0	0	0	0
St.27-1	0	2	5	0	0	1	0	1	0	0	0	0	1	0
St.27-2	0	1	15	10	1	0	0	1	0	0	0	0	0	0
St.27-3	3	10	11	4	7	4	1	0	1	2	0	0	0	0
St.28-1	0	3	3	1	3	10	2	0	0	0	0	0	0	0
St.28-2	0	2	8	7	5	5	2	0	1	0	0	0	0	0
St.28-3	0	3	3	2	1	3	2	0	1	0	0	0	0	0
St.29-1	1	3	0	0	0	2	0	0	0	0	0	0	0	0
St.29-2	0	2	4	1	0	1	2	0	0	0	0	0	0	0
St.29-3	0	2	3	2	1	2	1	1	0	0	0	0	0	0
St.30-1	2	2	0	2	1	3	3	0	0	0	0	0	0	0
St.30-2	0	1	4	6	1	4	3	0	0	0	0	0	0	0

Table 3-D. Components of instars of larvae and adults of oceanic sea skaters, Halobates micans and H. germanus sampled
at around $08^{\circ} 00^{\prime} \mathrm{S}, 080^{\circ} 30^{\prime} \mathrm{E}$ in the tropical Indian Ocean.

$1^{\text {st }}$	Halobates micans							H. germanus							
	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	Adults			$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	Adults			
				F	M							F	M		
St.31-1	0	0	2	1	4	0	3		0	0	0	0	0	0	0
St.31-2	0	1	2	2	2	1	2		0	0	0	0	0	0	0
St.31-3	0	1	1	2	2	2	4		0	0	0	0	0	0	0
St.32-1	1	1	2	3	1	0	1		0	0	0	0	0	0	0
St.32-2	0	1	3	2	3	3	4		0	1	0	0	0	0	0
St.32-3	0	0	0	1	2	3	3		0	0	0	0	0	0	0
St.33-1	1	1	3	3	1	3	3		0	0	0	0	0	0	0
St.33-2	1	3	4	0	3	5	7		1	0	0	0	0	0	0
St.33-3	0	1	5	3	2	5	7		0	0	0	0	0	0	0
St.34-1	0	1	0	2	2	1	0		0	0	0	0	0	0	0
St.34-2	1	0	1	1	0	0	0		0	1	0	0	0	0	0
St.24-3	1	2	0	0	0	1	0		0	1	0	0	0	0	0
St.35-1	0	1	2	2	2	2	1		0	0	0	0	0	0	0
St.35-2	0	2	2	1	1	2	0		0	0	0	0	0	0	0
St.35-3	0	1	1	2	0	1	0		0	0	0	0	0	0	0
St.36-1	4	0	1	2	4	5	2		0	0	0	0	0	0	0
St.36-2	1	1	1	0	2	3	5		0	0	0	0	0	0	0
St.36-3	0	0	1	0	3	6	4		0	0	0	0	0	0	0

Table 4-Sheet 1. Results of "heat-paralysis" experiments and SCP (Super Cooling Point) measurement performed on adults of Halobates micans (H.m.) and H. germanus (H.g.); TA: temp. at which specimen adapted, TSHP: temp. at which semi-heat paralysis occurred; THP: temp. at which heat-paralysis occurred ; GTHP: gap temp. for heat paralysis_(from base temp.); "Date and Time of day" when experiments were performed. (MR-11-04-Leg 1: Sep. 28-Oct 23, 2011), ITSCP: Increased temperature at SCP was detected: TD: Time of day when heat-paralysis experiment was performed

St.No.	Latitude L	Longitude	Exp.No.	TA	TSHP	THP	GTHP	SCP	ITSCP	Species	Stage (sex)	Date	TD
St. 1	0156'S	083 ${ }^{\circ} 24^{\prime}$ '	1	28	-	30	2	-17.4	4.9	H.m.	Adult (male)	Sep 28	07:00~
St. 1	015 ${ }^{\circ}$ 'S	083 ${ }^{\circ} 24^{\prime}$ E	1	28	-	30	2	-15.0	4.0	H.m.	Adult(female)	Sep 28	07:00~
St. 1	0156'S	083 ${ }^{\circ} 24^{\prime}$ E	1	28	-	30	2	-17.6	2.6	H.m.	Adult(female)	Sep 28	07:00~
St. 1	0156'S	083 ${ }^{\circ} 24^{\prime} \mathrm{E}$	1	28	-	35	7	-16.4	8.2	H.m.	Adult (male)	Sep 28	07:00~
St. 1	0156'S	083 ${ }^{\circ} 24^{\prime}$ E	1	28	-	36	8	-13.5	6.6	H.m.	Adult (male)	Sep 28	07:00~
St. 1	0156'S	083 ${ }^{\circ} 24^{\prime}$ E	1	28	-	37	9	-9.4	4.6	H.m.	Adult (female)	Sep 28	07:00~
St. 1	0156'S	083 ${ }^{\circ} 24^{\prime}$ E	1	28	-	38	10	-14.5	7.8	H.m.	$5^{\text {th }}$ instar	Sep 28	07:00~
St. 1	0156'S	083 ${ }^{\circ} 24^{\prime}$ E	1	28	-	40	12	-11.7	7.2	H.m.	Adult (female)	Sep 28	07:00~
St. 1	0156'S	083 ${ }^{\circ} 24^{\prime}$ E	1	28	-	40	12	-10.7	7.8	H.g.	Adult (female)	Sep 28	07:00~
St. 1	0156'S	$083{ }^{\circ} 24^{\prime} \mathrm{E}$	1	28	-	41	13	-15.1	5.6	H.g.	Adult (female)	Sep 28	07:00~
St. 2	08 ${ }^{\circ} 00^{\prime}$ S	080 ${ }^{\circ} 3{ }^{\prime}$ E	2	28	35	37	9	-9.7	4.4	H.m.	$3^{\text {rd }}$ instar	Oct 1	07:00~
St. 2	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime} \mathrm{E}$	2	28	36	38	10	-11.6	7.0	H.g.	Adult(female)	Oct 1	07:00~
St. 2	08 ${ }^{\circ} 0{ }^{\prime}$ S	080 ${ }^{\circ} 3{ }^{\prime} \mathrm{E}$	2	28	35	39	11	-12.1	5.0	H.m.	$4^{\text {th }}$ instar	Oct 1	07:00~
St. 2	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	2	28	35	41	13	-16.8	8.9	H.g.	$5^{\text {th }}$ instar	Oct 1	07:00~
St. 3	08 ${ }^{\circ} 0{ }^{\prime}$ S	080 ${ }^{\circ} 29$ '	3	28	29	31	3	-16.4	8.5	H.m.	$5^{\text {th }}$ instar	Oct 2	06:45~
St. 3	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ}{ }^{\prime}{ }^{\prime}$ E	3	28	34	36	8	-14.6	5.2	H.m.	Adult (male)	Oct 2	06:45~
St. 3	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 29$ '	3	28	32	37	9	-18.4	10.6	H.m.	Adult (female)	Oct 2	06:45~
St. 3	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ}{ }^{\prime}{ }^{\prime} \mathrm{E}$	3	28	36	37	9	-15.5	5.4	H.m.	Adult (male)	Oct 2	06:45~
St. 3	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ}{ }^{\prime}{ }^{\prime}$ E	3	28	33	37	9	-15.9	9.2	H.m.	Adult (female)	Oct 2	06:45~
St. 3	08900'S	080 ${ }^{\circ} 29$ '	3	28	36	38	10	-14.8	8.5	H.m.	Adult (female)	Oct 2	06:45~
St. 3	$08^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ}{ }^{\prime}{ }^{\prime}$ E	3	28	36	39	11	-16.2	8.4	H.m.	Adult(male)	Oct 2	06:45~
5.26-24													

St. 3	08 ${ }^{\circ} 0{ }^{\prime}$ S	080 ${ }^{\circ}{ }^{\prime}{ }^{\prime}$ E	3	28	38	39	11	-15.4	7.2	H.m.	Adult(female)	Oct 2	06:45~
St. 3	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ}{ }^{\prime}{ }^{\prime}$ E	3	28	39	39	11	-15.1	8.7	H.m.	Adult(female)	Oct 2	06:45~
St. 3	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080²9'E	3	28	39	40	12	-15.5	9.0	H.m.	$5^{\text {th }}$ instar	Oct 2	06:45~
St. 3	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ}{ }^{\prime}{ }^{\prime}$ E	3	28	40	40	12	-11.5	4.5	H.m.	Adult(female)	Oct 2	06:45~
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	31	31	2	-19.6	4.8	H.m.	Adult(female)	Oct 4	07:00~
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	32	34	5	-16.7	8.0	H.m.	Adult(female)	Oct 4	07:00~
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ}{ }^{\prime}{ }^{\prime} \mathrm{E}$	4	29	34	36	7	-13.2	4.4	H.m.	Adult(male)	Oct 4	07:00~
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	4	29	36	36	7	-15.6	4.7	H.m.	Adult(male)	Oct 4	07:00~
St. 4	08901'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	37	38	9	-13.5	5.8	H.m.	Adult(male)	Oct 4	07:00~

Table 4-Sheet 2. Results of "heat-paralysis" experiments and SCP (Super Cooling Point) measurement performed on adults of Halobates micans (H.m.) and H. germanus (H.g.); TA: temp. at which specimen adapted, TSHP: temp. at which semi-heat paralysis occurred; THP: temp. at which heat-paralysis occurred ; GTHP: gap temp. for heat paralysis_(from base temp.); "Date and Time of day" when experiments were performed. (MR-11-04-Leg 1: Sep. 28-Oct 23, 2011), ITSCP:
Increased temperature at SCP was detected; TD: Time of day when heat-paralysis experiment was performed

St.No.	Latitude	ongitude	Exp.No.	TA	TSHP	THP	GTHP	SCP	ITSCP	Species	Stage (sex)	Date	TD
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	37	38	9	-19.3	8.3	H.m.	Adult (male)	Oct 4	07:00~
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	38	38	9	-15.2	6.1	H.m.	Adult(male)	Oct 4	07:00~
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	38	38	9	-14.1	6.1	H.m.	Adult(male)	Oct 4	07:00~
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	38	38	9	-14.1	5.5	H.m.	Adult (female)	Oct 4	07:00~
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	38	39	10	-13.8	9.0	H.m.	Adult (female)	Oct 4	07:00~
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-17.0	1.5	H.m.	Adult(male)	Oct 4	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-15.0	6.3	H.m.	Adult (female)	Oct 4	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-14.7	3.4	H.m.	Adult (male)	Oct 4	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-14.9	6.4	H.m.	Adult(female)	Oct 4	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	4	29	-	-	-	-18.3	10.1	H.m.	Adult (male)	Oct 4	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-20.2	9.2	H.m.	Adult (male)	Oct 4	1000-1400

St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-19.1	7.6	H.m.	Adult (male)	Oct 4	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-20.8	6.8	H.m.	Adult(male)	Oct 4	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-18.8	3.9	H.m.	Adult (male)	Oct 4	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-16.5	6.0	H.m.	Adult (male)	Oct 4	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-17.5	6.6	H.m.	Adult(male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-19.9	8.9	H.m.	Adult (male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-16.6	7.5	H.m.	Adult (male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-20.8	10.7	H.m.	Adult (male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime} \mathrm{E}$	4	29	-	-	-	-20.1	5.9	H.m.	Adult(male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	4	29	-	-	-	-17.6	5.2	H.m.	Adult (male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	4	29	-	-	-	-17.3	7.0	H.m.	Adult (male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-15.9	8.3	H.m.	Adult (male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	4	29	-	-	-	-17.6	8.9	H.m.	Adult (male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	4	29	-	-	-	-18.9	9.6	H.m.	Adult (male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	4	29	-	-	-	- 15.4	7.8	H.m.	Adult(male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	4	29	-	-	-	-18.1	6.5	H.m.	Adult (male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	4	29	-	-	-	-18.0	9.2	H.m.	Adult (male)	Oct 5	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-17.7	7.9	H.m.	Adult (male)	Oct 7	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-21.0	8.1	H.m.	Adult (male)	Oct 7	1000-1400

Table 4-Sheet 3. Results of "heat-paralysis" experiments and SCP (Super Cooling Point) measurement performed on adults of Halobates micans (H.m.) and H. germanus (H.g.); TA: temp. at which specimen adapted, TSHP: temp. at which semi-heat paralysis occurred; THP: temp. at which heat-paralysis occurred ; GTHP: gap temp. for heat paralysis_(from base temp.); "Date and Time of day" when experiments were performed. (MR-11-04-Leg 1: Sep. 28-Oct 23, 2011), ITSCP: Increased temperature at SCP was detected; TD: Time of day when heat-paralysis experiment was performed
St.No. Latitude Longitude Exp.No. TA TSHP THP GTHP SCP ITSCP Species Stage (sex) Date TD TD

St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-22.2	7.7	H.m.	Adult (male)	Oct 7	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-17.7	7.2	H.m.	Adult (male)	Oct 7	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-18.6	7.5	H.m.	Adult (male)	Oct 7	1000-1400
St. 4	0801'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-21.8	7.9	H.m.	Adult (male)	Oct 7	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-16.2	7.6	H.m.	Adult (male)	Oct 7	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-21.2	9.1	H.m.	Adult (male)	Oct 7	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime} \mathrm{E}$	4	29	-	-	-	-19.5	3.5	H.m.	Adult (male)	Oct 7	1000-1400
St. 4	08 ${ }^{\circ} 01^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-17.6	8.3	H.m.	Adult (male)	Oct 7	1000-1400
St. 4	08 ${ }^{\circ} 01$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	4	29	-	-	-	-20.8	5.3	H.m.	Adult (male)	Oct 7	1000-1400
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime} \mathrm{E}$	5	28	32	33	5	-14.4	5.8	H.m.	$5^{\text {th }}$ instar	Oct 5	06:50~
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime} \mathrm{E}$	5	28	37	38	10	-18.6	8.3	H.m.	Adult (male)	Oct 5	06:50~
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	28	37	38	10	-16.5	6.6	H.m.	Adult (male)	Oct 5	06:50~
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime} \mathrm{E}$	5	28	38	38	10	-15.6	7.6	H.m.	Adult (male)	Oct 5	06:50~
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	28	38	38	10	-18.8	8.1	H.m.	Adult (female)	Oct 5	06:50~
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	28	39	39	11	-16.5	9.2	H.m.	Adult (male)	Oct 5	06:50~
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	28	39	39	11	-9.6	4.2	H.m.	Adult(male)	Oct 5	06:50~
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime} \mathrm{E}$	5	28	39	39	11	-12.0	9.1	H.m.	Adult(female)	Oct 5	06:50~
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	28	39	39	11	-13.7	7.0	H.m.	Adult (female)	Oct 5	06:50~
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	29	-	-	-	-21.8	9.3	H.m.	Adult (male)	Oct 8	08:00-12:00
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	29	-	-	-	-15.6	4.3	H.m.	Adult (male)	Oct 8	08:00-12:00
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	29	-	-	-	-19.6	7.2	H.m.	Adult (female)	Oct 8	08:00~12:00
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	29	-	-	-	-21.0	10.6	H.m.	Adult (male)	Oct 8	08:00~12:00
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	29	-	-	-	-21.3	6.9	H.m.	Adult (female)	Oct 8	08:00~12:00
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	29	-	-	-	-19.6	4.3	H.m.	Adult (male)	Oct 8	08:00~12:00
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	29	-	-	-	-19.4	8.6	H.m.	Adult(female)	Oct 8	08:00~12:00
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 3{ }^{\prime}$ E	5	29	-	-	-	-16.5	6.4	H.m.	Adult(female)	Oct 8	08:00~12:00

St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 30^{\prime}$ E	5	29	-	-	-	-17.0	7.0	H.m.	Adult (female)	Oct 8	08:00~12:00
St. 5	08 ${ }^{\circ} 00$ 'S	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	5	29	-	-	-	-18.5	6.4	H.m.	Adult (female)	Oct 8	08:00~12:00
St. 6	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 9^{\prime}$ E	6	29	37	37	8	-16.1	9.9	H.m.	$5^{\text {th }}$ instar	Oct 7	06:45~
St. 6	08800'S	080 ${ }^{\circ} 29^{\prime}$ E	6	29	32	38	9	-15.6	9.6	H.m.	Adult (female)	Oct 7	06:45~

Table 4-Sheet 4. Results of "heat-paralysis" experiments and SCP (Super Cooling Point) measurement performed on adults of Halobates micans (H.m.) and H. germanus (H.g.); TA: temp. at which specimen adapted, TSHP: temp. at which semi-heat paralysis occurred; THP: temp. at which heat-paralysis occurred ; GTHP: gap temp. for heat paralysis_(from base temp.); "Date and Time of day" when experiments were performed. (MR-11-04-Leg 1: Sep. 28-Oct 23, 2011), ITSCP: Increased temperature at SCP was detected: TD: Time of day when heat-paralysis experiment was performed

St.No.	atitude	ongitude	Exp.No.	TA	TSHP	THP	GTHP	SCP	ITSCP	Species	Stage (sex)	Date	TD
St. 6	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 29^{\prime}$ E	6	29	33	38	9	-15.4	9.2	H.m.	Adult (male)	Oct 7	06:45~
St. 6	08 ${ }^{\circ} 0{ }^{\prime}$ S	080²9'E	6	29	32	38	9	-17.8	4.0	H.m.	$4^{\text {th }}$ instar	Oct 7	06:45~
St. 6	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 29$ 'E	6	29	33	39	10	-16.4	5.1	H.m.	$4^{\text {th }}$ instar	Oct 7	06:45~
St. 6	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 29^{\prime}$ E	6	29	32	39	10	-15.2	6.3	H.g.	Adult (female)	Oct 7	06:45~
St. 6	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 29$ 'E	6	29	33	39	10	-19.3	4.8	H.g.	Adult(male)	Oct 7	06:45~
St. 6	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 29^{\prime}$ E	6	29	40	41	12	-15.5	6.4	H.g.	Adult(female)	Oct 7	06:45~
St. 6	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080²9'E	6	29	32	>=38	$>=9$	-	-	H.g.	$4^{\text {th }}$ instar	Oct 7	06:45~
St. 7	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	7	29	30	37	8	-16.0	9.5	H.m.	$5{ }^{\text {th }}$ instar	Oct 8	06:45~
St. 7	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	7	29	32	37	8	-15.9	6.4	H.m.	$5^{\text {th }}$ instar	Oct 8	06:45~
St. 7	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	7	29	31	38	9	-15.8	9.5	H.g.	Adult (male)	Oct 8	06:45~
St. 7	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	7	29	32	38	9	-16.3	6.3	H.m.	Adult (male)	Oct 8	06:45~
St. 7	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	7	29	38	38	9	-14.4	11.7	H.m.	Adult (male)	Oct 8	06:45~
St. 7	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	7	29	31	39	10	-18.5	7.3	H.g.	Adult (male)	Oct 8	06:45~
St. 7	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	7	29	38	39	10	-19.4	6.9	H.g.	Adult(female)	Oct 8	06:45~
St. 7	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	7	29	39	39	10	-18.5	5.0	H.g.	Adult(male)	Oct 8	06:45~

St. 7	08 ${ }^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	7	29	40	40	11	-11.8	5.0	H.g.	Adult(female)	Oct 8	06:45~
St. 7	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 30^{\prime}$ E	7	29	40	40	11	-12.5	0.5	H.g.	Adult (male)	Oct 8	06:45~
St. 8	08 ${ }^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	8	29	32	36	7	-15.6	5.3	H.m.	Adult(male)	Oct 10	06:45~
St. 8	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	8	29	32	36	7	-15.0	6.7	H.m.	Adult(male)	Oct 10	06:45~
St. 8	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	8	29	37	37	8	-17.2	5.0	H.m.	Adult(male)	Oct 10	06:45~
St. 8	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	8	29	37	37	8	-16.2	4.6	H.m.	Adult(male)	Oct 10	06:45~
St. 8	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	8	29	38	38	9	-16.6	7.7	H.m.	Adult(male)	Oct 10	06:45~
St. 8	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	8	29	38	38	9	-15.3	5.4	H.m.	$5^{\text {th }}$ instar	Oct 10	06:45~
St. 8	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	8	29	38	40	11	-15.0	5.3	H.m.	$5{ }^{\text {th }}$ instar	Oct 10	06:45~
St. 8	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	8	29	38	40	11	-15.4	9.6	H.m.	$5^{\text {th }}$ instar	Oct 10	06:45~
St. 8	08 ${ }^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	8	29	31	40	11	-17.0	3.1	H.g.	Adult(female)	Oct 10	06:45~
St. 8	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	8	29	-	=>35	=>6	-	-	H.m.	$4^{\text {th }}$ instar	Oct 10	06:45~
St. 9	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	9	29	30	30	1	-16.1	8.4	H.m.	$5^{\text {th }}$ instar	Oct 11	06:45~
St. 9	08 ${ }^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	9	29	32	36	7	-16.3	2.1	H.m.	Adult(male)	Oct 11	06:45~
St. 9	$08^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime} \mathrm{E}$	9	29	32	38	9	-16.3	6.2	H.m.	$5^{\text {th }}$ instar	Oct 11	06:45~

Table 4-Sheet 5. Results of "heat-paralysis" experiments and SCP (Super Cooling Point) measurement performed on adults of Halobates micans (H.m.) and H. germanus (H.g.); TA: temp. at which specimen adapted, TSHP: temp. at which semi-heat paralysis occurred; THP: temp. at which heat-paralysis occurred ; GTHP: gap temp. for heat paralysis_(from base temp.); "Date and Time of day" when experiments were performed. (MR-11-04-Leg 1: Sep. 28-Oct 23, 2011), ITSCP:
Increased temperature at SCP was detected; TD: Time of day when heat-paralysis experiment was performed

St.No	atitude	ongitude	Exp.No.	TA	TSHP	THP	GTHP	SCP	ITSCP	Species	Stage (sex)	Date	TD
St. 9	08 ${ }^{\circ} 00^{\prime} \mathrm{N}$	080 ${ }^{\circ} 29^{\prime}$ E	9	29	37	39	10	-17.9	6.7	H.m.	Adult(male)	Oct 11	06:45~
St. 9	08 ${ }^{\circ} 00^{\prime} \mathrm{N}$	$080{ }^{\circ} 29^{\prime}$ E	9	29	35	39	10	-16.3	7.6	H.m.	$4^{\text {th }}$ instar	Oct 11	06:45~
St. 9	08 ${ }^{\circ} 00^{\prime} \mathrm{N}$	$080{ }^{\circ} 29^{\prime}$ E	9	29	37	39	10	-18.2	4.7	H.m.	Adult(male)	Oct 11	06:45~
St. 9	$08^{\circ} 00^{\prime} \mathrm{N}$	$080{ }^{\circ} 29^{\prime} \mathrm{E}$	9	29	38	40	11	-18.8	1.8	H.m.	Adult(male	Oct 11	06:45~

St. 9	08 ${ }^{\circ} 00^{\prime} \mathrm{N} \quad 080^{\circ} 29^{\prime} \mathrm{E}$	9	29	37	40	11	-15.2	8.3	H.m.	Adult(female)	Oct 11	06:45~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 29^{\prime} \mathrm{E}$	10	29	-	-	-	-19.1	9.0	H.m.	Adult(female)	Oct 13	06:50~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime}$ E	10	29	-	-	-	-17.6	10.2	H.m.	Adult(female)	Oct 13	07:15~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	10	29	-	-	-	-16.8	8.8	H.m.	Adult(male)	Oct 13	07:45~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime}$ E	10	29	-	-	-	-15.3	7.5	H.m.	Adult(female)	Oct 13	08:05~
St. 10	$08^{\circ} 00^{\prime} \mathrm{S} \mathrm{080}{ }^{\circ} 29^{\prime} \mathrm{E}$	10	29	-	-	-	-17.0	8.4	H.m.	$5^{\text {th }}$ instar	Oct 13	08:25~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime}$ E	10	29	-	-	-	-14.8	7.2	H.m.	$5^{\text {th }}$ instar	Oct 13	08:40~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	10	29	-	-	-	-17.1	7.0	H.m.	$5^{\text {th }}$ instar	Oct 13	08:55~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	10	29	-	-	-	-15.3	4.9	H.m.	$5^{\text {th }}$ instar	Oct 13	09:10~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime}$ E	10	29	33	38	9	-11.0	4.3	H.m.	Adult(male)	Oct 13	06:30~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	10	29	37	39	10	-21.0	8.6	H.m.	Adult(female)	Oct 13	06:30~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	10	29	38	39	10	-16.3	7.1	H.m.	Adult(female)	Oct 13	06:30~
St. 10	08 ${ }^{\circ} 00^{\prime} \mathrm{S} \mathrm{080}^{\circ} 29^{\prime} \mathrm{E}$	10	29	38	39	10	-20.9	9.2	H.m.	Adult(male)	Oct 13	06:30~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	10	29	38	39	10	-18.6	6.2	H.m.	Adult(male)	Oct 13	06:30~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	10	29	38	39	10	-17.8	4.2	H.m.	Adult(male)	Oct 13	06:30~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	10	29	39	40	11	-12.9	1.5	H.m.	Adult(male)	Oct 13	06:30~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	10	29	39	40	11	-16.9	6.9	H.m.	Adult(female)	Oct 13	06:30~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	10	29	40	40	11	-16.4	7.1	H.m.	Adult(female)	Oct 13	06:30~
St. 10	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	10	29	40	40	11	-15.2	4.8	H.m.	Adult(female)	Oct 13	06:30~
St. 11	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	11	29	33	36	7	-19.0	10.7	H.m.	$5^{\text {th }}$ instar	Oct 14	06:35~
St. 11	$08^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	11	29	32	37	8	-14.8	6.1	H.m.	Adult(female)	Oct 14	06:35~
St. 11	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	11	29	37	38	9	-21.1	10.4	H.m.	Adult(female)	Oct 14	06:35~
St. 11	08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	11	29	40	40	11	-20.2	8.4	H.m.	$5{ }^{\text {th }}$ instar	Oct 14	06:35~
St. 11	$08^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	11	29	38	40	11	-17.9	7.8	H.m.	Adult(male)	Oct 14	06:35~
St. 11	$08^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	11	29	38	40	11	-12.3	5.2	H.m.	Adult(male)	Oct 14	06:35~
St. 11	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime}$ E	11	29	38	40	11	-16.6	9.2	H.m.	Adult(female)	Oct 14	06:35~

Table 4-Sheet 6. Results of "heat-paralysis" experiments and SCP (Super Cooling Point) measurement performed on adults of Halobates micans (H.m.) and H. germanus (H.g.); TA: temp. at which specimen adapted, TSHP: temp. at which semi-heat paralysis occurred; THP: temp. at which heat-paralysis occurred ; GTHP: gap temp. for heat paralysis_(from base temp.); "Date and Time of day" when experiments were performed. (MR-11-04-Leg 1: Sep. 28-Oct 23, 2011), ITSCP:
Increased temperature at SCP was detected: TD: Time of day when heat-paralysis experiment was performed

St. 12	08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	12	29	40	40	11	-15.9	6.1	H.m.	Adult (male)	Oct 16	06:45~
St. 12	$08^{\circ} 00^{\prime} \mathrm{S} 080{ }^{\circ} 29^{\prime} \mathrm{E}$	12	29	40	40	11	-17.8	8.3	H.m.	Adult (male)	Oct 16	06:45~
St. 12	08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	12	29	39	41	12	-17.9	5.7	H.m.	Adult (female)	Oct 16	06:45~
St. 13	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	13	29	37	39	10	-16.3	8.7	H.m.	Adult(male)	Oct 17	06:45~
St. 13	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	13	29	36	39	10	-15.7	6.8	H.m.	Adult (female)	Oct 17	06:45~
St. 13	08 ${ }^{\circ} 00^{\prime}$ S $080{ }^{\circ} 29^{\prime} \mathrm{E}$	13	29	38	39	10	-17.5	9.4	H.m.	Adult (male)	Oct 17	06:45~
St. 13	$08^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	13	29	39	40	11	-16.6	7.5	H.m.	Adult (male)	Oct 17	06:45~
St. 13	$08^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	13	29	38	40	11	-9.1	3.6	H.m.	Adult (female)	Oct 17	06:45~
St. 13	$08^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	13	29	39	40	11	-15.8	5.9	H.m.	Adult (female)	Oct 17	06:45~
St. 13	08 ${ }^{\circ} 00^{\prime}$ S $080^{\circ} 29^{\prime} \mathrm{E}$	13	29	39	40	11	-16.3	4.8	H.m.	Adult (female)	Oct 17	06:45~
St. 13	080 ${ }^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	13	29	39	41	12	-15.4	4.9	H.m.	Adult (male)	Oct 17	06:45~

Table 4-Sheet 7. Results of "heat-paralysis" experiments and SCP (Super Cooling Point) measurement performed on adults of Halobates micans (H.m.) and H. germanus (H.g.); TA: temp. at which specimen adapted, TSHP: temp. at which semi-heat paralysis occurred; THP: temp. at which heat-paralysis occurred ; GTHP: gap temp. for heat paralysis_(from base temp.); "Date and Time of day" when experiments were performed. (MR-11-04-Leg 1: Sep. 28-Oct 23, 2011), ITSCP:
Increased temperature at SCP was detected; TD: Time of day when heat-paralysis experiment was performed

St.No.	Latitude Longitude	Exp.No.	TA	TSHP	THP	GTHP	SCP	ITSCP	Species	Stage (sex)	Date	TD
St. 13	08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	13	29	40	41	12	-17.3	7.9	H.m.	Adult (female)	Oct 17	06:45~
St. 13	08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	13	29	39	41	12	-16.0	4.8	H.m.	Adult(male)	Oct 17	06:45~
St. 14	0759'S 080 ${ }^{\circ} 29^{\prime}$ E	14	29	39	39	10	-20.4	8.6	H.m.	Adult (male)	Oct 19	06:30~
St. 14	0759'S 080 ${ }^{\circ} \mathbf{2 9}^{\prime} \mathrm{E}$	14	29	38	39	10	-18.4	6.5	H.m.	Adult(female)	Oct 19	06:30~
St. 14		14	29	39	39	10	-18.8	6.1	H.m.	Adult(male)	Oct 19	06:30~
St. 14	0759'S 080 ${ }^{\circ} \mathbf{2 9}^{\prime} \mathrm{E}$	14	29	39	40	11	-20.3	10.3	H.m.	Adult (female)	Oct 19	06:30~
St. 14	0759'S 080 ${ }^{\circ} 29^{\prime}$ E	14	29	39	40	11	-20.8	10.3	H.m.	Adult (male)	Oct 19	06:30~
St. 14	0759'S 080 ${ }^{\circ} \mathbf{2 9}^{\prime} \mathrm{E}$	14	29	41	41	12	-18.1	9.0	H.m.	Adult (female)	Oct 19	06:30~

St. 14	0759'S $080{ }^{\circ} 29^{\prime} \mathrm{E}$	14	29	41	41	12	-18.6	8.8	H.m.	Adult (female)	Oct 19	06:30~
St. 15		15	29	31	40	11	-18.1	9.9	H.m.	$5^{\text {th }}$ instar	Oct 20	06:45~
St. 15	0759'S $080{ }^{\circ} 3{ }^{\prime} \mathrm{E}$	15	29	37	40	11	-19.4	5.1	H.m.	$5^{\text {th }}$ instar	Oct 20	06:45~
St. 15	07º ${ }^{\prime}$ 'S $080{ }^{\circ} 30^{\prime} \mathrm{E}$	15	29	35	40	11	-	-	H.m.	Adult (male)	Oct 20	06:45~
St. 15	07${ }^{\circ} 59^{\prime}$ S 080 ${ }^{\circ} 30^{\prime}$ E	15	29	40	40	11	-15.8	2.2	H.m.	$5{ }^{\text {th }}$ instar	Oct 20	06:45~
St. 15	07ºs9'S 080 ${ }^{\circ} 30^{\prime}$ E	15	29	35	40	11	-12.3	7.6	H.m.	Adult(female)	Oct 20	06:45~
St. 15		15	29	37	40	11	-17.6	0.8	H.m.	Adult(female)	Oct 20	06:45~
St. 15	07º $59{ }^{\prime}$ S 080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	15	29	39	40	11	-12.6	5.2	H.m.	Adult (female)	Oct 20	06:45~
St. 15	07${ }^{\circ} 59{ }^{\prime}$ S 080 ${ }^{\circ} 30^{\prime}$ E	15	29	39	41	12	-15.6	4.3	H.m.	Adult(female)	Oct 20	06:45~
St. 15	07${ }^{\circ} 59{ }^{\prime}$ S 080 ${ }^{\circ} 30^{\prime}$ E	15	29	36	41	12	-16.1	4.0	H.g.	Adult(male)	Oct 20	06:45~
St. 16	0759'S 080 ${ }^{\circ} 29^{\prime}$ E	16	29	32	38	9	-14.2	7.8	H.m.	Adult(female)	Oct 22	06:45~
St. 16	0759'S $080{ }^{\circ} 29^{\prime} \mathrm{E}$	16	29	36	39	10	-18.1	9.0	H.m.	$5^{\text {th }}$ instar	Oct 22	06:45~
St. 16	0759'S 080 ${ }^{\circ} 29^{\prime}$ E	16	29	37	39	10	-13.8	6.6	H.m.	$5{ }^{\text {th }}$ instar	Oct 22	06:45~
St. 16	07 $59{ }^{\prime} \mathrm{S} 080{ }^{\circ} 29^{\prime} \mathrm{E}$	16	29	39	40	11	-19.2	9.1	H.m.	$5^{\text {th }}$ instar	Oct 22	06:45~
St. 16	0759'S 080 ${ }^{\circ} 29^{\prime}$ E	16	29	37	40	11	-20.0	10.7	H.m.	Adult(female)	Oct 22	06:45~
St. 16	0759'S $080{ }^{\circ} 29^{\prime} \mathrm{E}$	16	29	39	40	11	-	-	H.m.	$5^{\text {th }}$ instar	Oct 22	06:45~
St. 16	0759'S 080 ${ }^{\circ} 29^{\prime}$ E	16	29	39	40	11	-19.1	8.2	H.m.	$5^{\text {th }}$ instar	Oct 22	06:45~
St. 16	0759'S 080 ${ }^{\circ} 29^{\prime}$ E	16	29	39	41	12	-16.3	6.1	H.m.	Adult(female)	Oct 22	06:45~
St. 16	07ºs9'S $080{ }^{\circ} 29^{\prime} \mathrm{E}$	16	29	40	41	12	-18.6	7.3	H.m.	$5{ }^{\text {th }}$ instar	Oct 22	06:45~
St. 16	0759'S 080 ${ }^{\circ} 29^{\prime}$ E	16	29	41	41	12	-8.1	0.6	H.m.	Adult(female)	Oct 22	06:45~
St. 17	08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	17	29	30	40	11	-11.0	5.0	H.g.	Adult(female)	Oct 23	06:45~
St. 17	08 ${ }^{\circ} 00^{\prime} \mathrm{S} 080^{\circ} 29^{\prime} \mathrm{E}$	17	29	37	40	11	-17.6	5.2	H.m.	$5{ }^{\text {th }}$ instar	Oct 23	06:45~

Table 4-Sheet 8. Results of "heat-paralysis" experiments and SCP (Super Cooling Point) measurement performed on adults of Halobates micans (H.m.) and H. germanus (H.g.); TA: temp. at which specimen adapted, TSHP: temp. at which semi-heat paralysis occurred; THP: temp. at which heat-paralysis occurred ; GTHP: gap temp. for heat paralysis_(from
base temp.); "Date and Time of day" when experiments were performed. (MR-11-04-Leg 1: Sep. 28-Oct 23, 2011), ITSCP:
Increased temperature at SCP was detected: TD: Time of day when heat-paralysis experiment was performed

St.No.	itud	ongitude	Exp.No.	TA	TSHP	THP	GTHP	SCP	ITSCP	Species	Stage (sex)	Date	TD
St. 17	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 29^{\prime}$ E	17	29	38	40	11	-14.1	6.8	H.m.	Adult (female)	Oct 23	06:45~
St. 17	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 29^{\prime} \mathrm{E}$	17	29	40	40	11	-14.9	9.3	H.m.	$5^{\text {th }}$ instar	Oct 23	06:45~
St. 17	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 29^{\prime} \mathrm{E}$	17	29	41	41	12	-8.6	5.3	H.m.	$5^{\text {th }}$ instar	Oct 23	06:45~
St. 17	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 29^{\prime}$ E	17	29	41	41	12	-11.0	0.5	H.m.	$5^{\text {th }}$ instar	Oct 23	06:45~
St. 17	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 29^{\prime}$ E	17	29	41	41	12	-11.6	4.1	H.g.	Adult (female)	Oct 23	06:45~

Table 5-A. Comparison of Temperature for Heat Semi-Coma Temperature (HSCT), Heat Coma Temperature (HCT), Gap Temperature for Heat Coma (GTHC), Super-Cooling Temperature (SCP) and Increased Temperature at Super Cooling Point (ITSCP) between Halobates micans and H. germanus. Experiments were performed in the period of 28 Sep to $23^{\text {rd }}$ Oct. 2011 in the wet-laboratory 2 of R/V Mirai during the cruise of MR-11-07[Mean $\pm \operatorname{SD(n)]~}$

	HSCT	HCT	GTHC	SCP	ITSCP
H.micans	36.8 ± 2.9 (125)	38.4 ± 2.4 (133)	$9.7 \pm 2.2(133)$	-16.0土2.7(131)	6.8 ± 2.3 (131)
H. germanus	$34.9 \pm 3.9(18)$	$39.8 \pm 1.1(20)$	$11.0 \pm 1.2(20)$	-15.7 ± 3.3 (19)	6.0 ± 2.3 (19)
Total	36.6 $\pm 3.1(143)$	38.6 $\pm 2.3(153)$	9.8 $\pm 2.2(153)$	$-16.0 \pm 2.8(150)$	$6.7 \pm 2.3(150)$

Mann-Whitney U-test between H. micans and H. germanus

\boldsymbol{Z}	-1.889	-2.848	-2.718	-0.339	-1.382
\boldsymbol{P}	0.059	0.004	0.007	0.735	0.167

Table 5-B. Comparison of Temperature for Heat Semi-Coma Temperature (HSCT), Heat Coma Temperature (HCT), Gap Temperature for Heat Coma (GTHC), Super-Cooling Temperature (SCP) and Increased Temperature at Super Cooling Point (ITSCP) between females and males in mostly Halobates micans and partically H.germanus. Experiments were performed in the period of 28 Sep to $23^{\text {rd }}$ Oct, 2011 in the wet-laboratory 2 of R/V Mirai during the cruise of MR-11-07 $[$ Mean $\pm \mathrm{SD}(\mathrm{n})]$
Adult stage \quad HSCT \longrightarrow HCT $\xrightarrow{\text { GTHC }} \frac{\text { SCP }}{\text { ITSCP }}$

Females	$37.0 \pm 3.1(55)$	$38.9 \pm 2.4(61)$	$10.2 \pm 2.3(61)$	$-15.6 \pm 3.1(61)$	$6.8 \pm 2.3(61)$
Males	$36.7 \pm 2.6(54)$	$38.4 \pm 1.8(57)$	$9.6 \pm 1.7(57)$	$-16.3 \pm 2.3(56)$	$6.3 \pm 2.3(56)$
Total	$36.9 \pm 2.9(109)$	$38.6 \pm 2.2(118)$	$9.9 \pm 2.1(118)$	$-15.9 \pm 2.8(117)$	$6.6 \pm 2.3(117)$
Mann-Whitney \boldsymbol{U}-test between females and males					
\boldsymbol{Z}	-1.178	-2.870	-3.149	-1.332	-1.356
\boldsymbol{P}	0.239	0.004	0.002	0.183	0.175

Table 5-C. Comparison of Temperature for Heat Semi-Coma Temperature (HSCT), Heat Coma Temperature (HCT), Gap Temperature for Heat Coma (GTHC), Super-Cooling Temperature (SCP) and Increased Temperature at Super Cooling Point (ITSCP) among $3^{\text {rd }}$ to $5^{\text {th }}$ larval instars and adult stages in mostly Halobates micans and partically H.germanus. Experiments were performed in the period of 28 Sep to $23^{\text {rd }}$ Oct, 2011 in the wet-laboratory 2 of R/V Mirai during the cruise of MR-11-07 [Mean \pm SD(n)]

	HSCT	HCT	GTHC	SCP	ITSCP
Adults	36.9 ± 2.9 (109)	$38.6 \pm 2.2(118)$	9.9 ± 2.1 (118)	$-15.9 \pm 2.8(117)$	6.6 ± 2.3 (117)
$5^{\text {th }}$ instars	$36.2 \pm 3.7(28)$	$38.6 \pm 2.9(29)$	9.7 ± 2.8 (29)	$-16.3 \pm 2.6(28)$	7.3 ± 2.4 (28)
$4^{\text {th }}$ instars	$33.4 \pm 1.5(5)$	$38.6 \pm 0.5(5)$	9.8 ± 0.8 (5)	-15.7 $\pm 2.5(4)$	$5.4 \pm 1.5(4)$
$3^{\text {rd }}$ instar	35(1)	37(1)	9.0	-9.7(1)	4.4(1)
Total	36.6 ± 3.1 (143)	$38.6 \pm 2.3(153)$	$9.8 \pm 2.2(153)$	$-16.0 \pm 2.8(150)$	$6.7 \pm 2.3(150)$

Kruskal-Wallis-test among stages

\boldsymbol{X}^{2} value	5.966	1.528	1.015	0.453	5.539
$\boldsymbol{d} \boldsymbol{f}$	2	2	2	2	2
\boldsymbol{P}	0.051	0.466	0.602	0.797	0.063
\boldsymbol{F}	2.407	0.175	0.085	1.950	1.490
$\boldsymbol{d} \boldsymbol{f}$	3	3	3	3	3
\boldsymbol{P}	0.070	0.913	0.968	0.124	0.220

Table 6. Effect of the application of Heat Coma Experiment (HC exp.) before measuring Super-Cooling Point (SCP) and Increased Temperature at SCP (ITSCP) on these two values. Data on the specimens collected at around $08^{\circ} 00^{\prime} \mathrm{S}, 080^{\circ} 30^{\prime} \mathrm{E}$ (Stations 2-17) were analyzed. Experiments were performed in the period of $1^{\text {st }}$ Oct to $23^{\text {rd }} \mathrm{Oct}, \underline{2011 \text { in the wet-laboratory } 2 \text { of R/V Mirai during the cruise of MR-11-07 [Mean } \pm \mathrm{SD}(\mathrm{n})] ~] . ~}$

Table 7-Sheet 1. Results of salinity experiment (Experiment 1) performed on larvae and adults of
Halobates micans (H. m.) HS: hours in survival under starvation on one of 5 brackish or fresh
waters with six salinity concentrations (A: sea water, 10%, B: $8 \%, \mathrm{C}: 6 \%$, D: $4 \%, \mathrm{E}: 2 \%, \mathrm{~F}: 0 \%$) ; "Date" when experiments started. (MR-11-07-Leg2: Oct
28-Dec 2.2011) Water temperature: 28.6Cº. Air Temperature: 29.5C ${ }^{\circ}$

Latitude(N) Longitude(E) Exp.No.				HS	$\underline{\text { Species }}$		Stage (sex) D	Date S	Salinity conc..
St.18-24	08 ${ }^{\circ} 0{ }^{\prime}$ S	080 ${ }^{\circ} 3{ }^{\prime}$ E	1	1	12	H. m.	$5^{\text {th }}$ instar	Nov 8	A
St.18-24	08 ${ }^{\circ} 00{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	1	1	15	H. m.	Adult (male)	Nov 8	A
St.18-24	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	1	1	51	H. m.	Adult (male)	Nov 8	A
St.18-24	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	1	1	63	H. m.	Adult (female)	Nov 8	A
St.18-24	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	$080^{\circ} 30^{\prime} \mathrm{E}$	1	1	109	H. m.	Adult (female)	Nov 8	A
St.18-24	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	1	2	H. m.	$5^{\text {th }}$ instar	Nov 8	B
St.18-24	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	1	1	17	H. m.	Adult (female)	Nov 8	B
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	1	1	25	H. m.	Adult (female)	Nov 8	B
St.18-24	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	1	29	H. m.	Adult (male)	Nov 8	B
								5.26-36	

St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	32	H. m.	Adult (male)	Nov 8	B
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	13	H. m.	Adult (male)	Nov 8	C
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	19	H. m.	Adult (female)	Nov 8	C
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	23	H. m.	Adult (female)	Nov 8	C
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	25	H. m.	Adult (male)	Nov 8	C
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	29	H. m.	Adult (female)	Nov 8	C
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	6	H. m.	Adult (male)	Nov 8	D
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	7	H. m.	Adult (male)	Nov 8	D
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	8	H. m.	Adult (female)	Nov 8	D
St.18-24	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	9	H. m.	Adult (female)	Nov 8	D
St.18-24	0800'S	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	9	H. m.	$5{ }^{\text {th }}$ instar	Nov 8	D
St.18-24	08 ${ }^{\circ} 0{ }^{\prime}$ S	$080{ }^{\circ} 30^{\prime}$ E	1	25	H. m.	. Adult (female)) $\operatorname{Nov} 8$	D
St.18-24	0800'S	$080{ }^{\circ} 30^{\prime}$ E	1	4	H. m.	Adult (female)	Nov 8	E
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	4	H. m.	Adult (female)	Nov 8	E
St.18-24	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	1	7	H. m.	Adult (female)	Nov 8	E
St.18-24	0800'S	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	7	H. m.	Adult (male)	Nov 8	E
St.18-24	0800'S	$080{ }^{\circ} 30^{\prime}$ E	1	8	H. m.	Adult (male)	Nov 8	E
St.18-24	0800'S	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	12	H. m.	$5^{\text {th }}$ instar	Nov 8	E
St.18-24	0800'S	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	3	H. m.	Adult (female)	Nov 8	F
St.18-24	0800'S	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	3	H. m.	Adult (female)	Nov 8	F
St.18-24	0800'S	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	4	H. m.	Adult (female)	Nov 8	F
St.18-24	0800'S	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	4	H. m.	Adult (male)	Nov 8	F
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	5	H. m.	Adult (female)	Nov 8	F
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	1	5	H. m.	Adult (male)	Nov 8	F

Table 7-Sheet 2. Results of salinity experiment (Experiment 2) performed on larvae and adults of

Halobates micans (H. m.) HS: hours in survival under starvation on one of 5 brackish or fresh
waters with six salinity concentrations (A: sea water, 10%, B: $8 \%, \mathrm{C}: 6 \%, \mathrm{D}: 4 \%, \mathrm{E}: 2 \%, \mathrm{~F}: 0 \%$) ; "Date" when experiments started. (MR-11-07-Leg2: Oct 28-Dec 2, 2011) Water temperature: $28.8 \mathrm{C}^{\circ}$; Air Temperature: $29.6 \mathrm{C}^{\circ}$

Latitude(N) Longitude(E) Exp.No.			HS		$\underline{\text { Species }}$ S		Stage (sex)	Salinity conc..	
St.25-28	0800'S	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	2	2	6	H. m.	$5^{\text {th }}$ instar	Nov 13	A
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2	2	15	H. m.	Adult (female)	Nov 13	A
St.25-28	0800'S	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	2	2	21	H. m.	Adult (male)	Nov 13	A
St.25-28	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2	2	30	H. m.	Adult (female)	Nov 13	A
St.25-28	08 ${ }^{\circ} 00^{\prime}$ S	080 ${ }^{\circ} 30^{\prime}$ E	2	2	37	H. m.	Adult (female)	Nov 13	A
St.25-28	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	2	2	45	H. m.	Adult (male)	Nov 13	A
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2	2	>48	H. m.	Adult (female)	Nov 13	A
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2	2	>48	H. m.	Adult (male)	Nov 13	A
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2	2	15	H. m.	Adult (female)	Nov 13	B
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 3{ }^{\prime} \mathrm{E}$	2	2	25	H. m.	Adult (male)	Nov 13	B
St.25-28	0800'S	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	2	2	29	H. m.	$5^{\text {th }}$ instar	Nov 13	B
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2	2	37	H. m.	Adult (female)	Nov 13	B
St.25-28	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	2	2	39	H. m.	Adult (female)	Nov 13	B
St.25-28	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2	2	41	H. m.	Adult (female)	Nov 13	B
St.25-28	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2		46	H. m.	Adult (female)	Nov 13	B
St.25-28	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	2	2	>48	H. m.	Adult (male)	Nov 13	B
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2	2	5	H. m.	$5^{\text {th }}$ instar	Nov 13	C
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2	2	8	H. m.	Adult (female)	Nov 13	C
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2		8	H. m.	Adult (male)	Nov 13	C
St.25-28	0800'S	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	2	2	12	H. m.	Adult (female)	Nov 13	C
St.25-28	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2	2	16	H. m.	Adult (female)	Nov 13	C
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2	2	19	H. m.	Adult (female)	Nov 13	C
								.26-38	

St.25-28	08 ${ }^{\circ} 00^{\prime}$ S	$080{ }^{\circ} 30^{\prime}$ E	2	27	H. m.	Adult (male)	Nov 13	C
St.25-28	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	2	3	H. m.	Adult (female)	Nov 13	D
St.25-28	08 ${ }^{\circ} 0{ }^{\prime}$ S	$080{ }^{\circ} 30^{\prime}$ E	2	6	H. m.	$5^{\text {th }}$ instar	Nov 13	D
St.25-28	08 ${ }^{\circ} 0{ }^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	2	7	H. m.	Adult (female)	Nov 13	D
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	2	8	H. m.	Adult (male)	Nov 13	D
St.25-28	08 ${ }^{\circ} 00^{\prime}$ S	$080{ }^{\circ} 30^{\prime}$ E	2	8	H. m.	Adult (female)	Nov 13	D
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	2	8	H. m.	Adult (female)	Nov 13	D
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	2	9	H. m.	Adult (male)	Nov 13	D
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080^{\circ} 30^{\prime} \mathrm{E}$	2	2	H. m.	Adult (female)	Nov 13	E

Table 7-Sheet 3. Results of salinity experiment (Experiment 2) performed on larvae and adults of Halobates micans (H. m.) HS: hours in survival under starvation on one of 5 brackish or fresh waters with six salinity concentrations (A: sea water, 10%, B: $8 \%, \mathrm{C}: 6 \%$, D: 4%, $\mathrm{E}: 2 \%, \mathrm{~F}: 0 \%$) ; "Date" when experiments started. (MR-11-07-Leg2: Oct 28-Dec 2, 2011) Water temperature: $28.8 \mathrm{C}^{\circ}$; Air Temperature: $29.6 \mathrm{C}^{\circ}$

Latitude(N) Longitude(E) Exp.No.					$\underline{\text { Species }}$ S		Stage (sex)	Salinity conc..	
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080^{\circ} 30^{\prime}$ E	2		3	H. m.	Adult (female)	Nov 13	E
St.25-28	08 ${ }^{\circ} 00^{\prime}$ S	$080^{\circ} 30^{\prime} \mathrm{E}$	2		5	H. m.	Adult (male)	Nov 13	E
St.25-28	08 ${ }^{\circ} 00^{\prime}$ S	$080^{\circ} 30^{\prime}$ E	2		5	H. m.	Adult (male)	Nov 13	E
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	2		6	H. m.	Adult (female)	Nov 13	E
St.25-28	08 ${ }^{\circ} 00^{\prime}$ S	$080^{\circ} 30^{\prime}$ E	2		7	H. m.	Adult (male)	Nov 13	E
St.25-28	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080^{\circ} 30^{\prime}$ E	2		8	H. m.	Adult (female)	Nov 13	E
St.25-28	08 ${ }^{\circ} 00^{\prime}$ S	080 ${ }^{\circ} 30$ ' E	2	2	8	H. m.	$5^{\text {th }}$ instar	Nov 13	E
St.25-28	08 ${ }^{\circ} 00^{\prime}$ S	080 ${ }^{\circ} 30 \cdot \mathrm{E}$	2		2	H. m.	$5^{\text {th }}$ instar	Nov 13	F
St.25-28	08 ${ }^{\circ} 00^{\prime}$ S	080 ${ }^{\circ} 30$ ' E	2	2	3	H. m.	Adult (female)	Nov 13	F
St.25-28	08 ${ }^{\circ} 00^{\prime}$ S	080 ${ }^{\circ} 30 \cdot \mathrm{E}$	2	2	3	H. m.	$5^{\text {th }}$ instar	Nov 13	F
St.25-28	08 ${ }^{\circ} 00^{\prime}$ S	$080^{\circ} 30^{\prime}$ E	2		4	H. m.	Adult (female)	Nov 13	F
								.26-39	

St.25-28	$08^{\circ} 00^{\prime} \mathrm{S}$	$080^{\circ} 30^{\prime} \mathrm{E}$	2	5	H. m.	Adult (male)	Nov 13	F	
St.25-28	$08^{\circ} 00^{\prime} \mathrm{S}$	$080^{\circ} 30^{\prime} \mathrm{E}$	2	6	H. m.	Adult (male)	Nov 13	F	
St.25-28	$08^{\circ} 00^{\prime} \mathrm{S}$	$080^{\circ} 30^{\prime} \mathrm{E}$	2	6	H. m.	Adult (male)	Nov 13	F	
St.25-28	$08^{\circ} 00^{\prime} \mathrm{S}$	$080^{\circ} 30^{\prime} \mathrm{E}$	2	6	H. m.	Adult (female)	Nov 13	F	

Table 7-Sheet 4. Results of salinity experiment (Experiment 2) performed on larvae and adults of
Halobates micans (H. m.) HS: hours in survival under starvation on one of 5 brackish or fresh
waters with six salinity concentrations (A: sea water, 10%, A": 9%, B: 8%, C: 6%, D: 4%, $\mathrm{E}: 2 \%$, $\mathrm{F}: 0 \%$) ; "Date" when experiments started. (MR-11-07-Leg2:
Oct 28-Dec 2, 2011) Water temperature: $28.6 \mathrm{C}^{\circ}$; Air Temperature: $29.6 \mathrm{C}^{\circ}$

Latitude(N) Longitude(E) Exp.No.				HS	$\underline{\text { Species }}$		tage (sex) D	Salinity conc..	
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080^{\circ} 30^{\prime} \mathrm{E}$	3		29	H. m.	Adult (male)	Nov 22	A
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	3	3	42	H. m.	Adult (male)	Nov 22	A
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	3		44	H. m.	Adult (male)	Nov 22	A
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	3	3	62	H. m.	Adult (male)	Nov 22	A
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	3	3	64	H. m.	Adult (female)	Nov 22	A
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	3	3	89	H. m.	Adult (female)	Nov 22	A
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	2	H. m.	Adult (female)	Nov 22	A'
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	17	H. m.	Adult (female)	Nov 22	A'
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	25	H. m.	Adult (male)	Nov 22	A^{\prime}
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	31	H. m.	Adult (male)	Nov 22	A^{\prime}
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	38	H. m.	Adult (female)	Nov 22	A^{\prime}
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	62	H. m.	Adult (male)	Nov 22	A'
St.18-24	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	72	H. m.	Adult (female)	Nov 22	A^{\prime}
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	20	H. m.	Adult (male)	Nov 22	B
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	3	3	29	H. m.	Adult (female)	Nov 22	B
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime}$ E	3	3	36	H. m.	Adult (female)	Nov 22	B

St.29-34	08\%00'S	080 ${ }^{\circ} 30^{\prime}$ E	3	37	H. m.	Adult (female)	Nov 22	B
St.29-34	0800's	$080^{\circ} 30^{\prime} \mathrm{E}$	3	50	H. m.	Adult (female)	Nov 22	B
St.29-34	0800's	$080^{\circ} 30^{\prime}$ E	3	12	H. m.	Adult (female)	Nov 22	C
St.29-34	$08^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	3	14	H. m.	Adult (female)	Nov 22	C
St.29-34	0800's	$080^{\circ} 30^{\prime} \mathrm{E}$	3	16	H. m.	Adult (female)	Nov 22	C
St.29-34	0800 ${ }^{\circ} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	3	25	H. m.	Adult (male)	Nov 22	C
St.29-34	$08^{\circ} 00^{\prime} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	3	26	H. m.	Adult (male)	Nov 22	C
St.29-34	0800's	$080^{\circ} 30^{\prime} \mathrm{E}$	3	28	H. m.	Adult (male)	Nov 22	C
St.29-34	0800 ${ }^{\circ} \mathrm{S}$	080 ${ }^{\circ} 30^{\prime}$ E	3	2	H. m.	Adult (female)	Nov 22	D
St.18-24	0800's	$080^{\circ} 30^{\prime} \mathrm{E}$	2	2	H. m.	Adult (female)	Nov 22	D
St.18-24	08\%00's	080 ${ }^{\circ} 0^{\prime}$ E	2	3	H. m.	Adult (male)	Nov 13	D
St.18-24	0800's	$080^{\circ} 30^{\prime} \mathrm{E}$	2	4	H. m.	Adult (female)	Nov 13	D
St.18-24	0800's	$080^{\circ} 30^{\prime} \mathrm{E}$	2	4	H. m.	Adult (male)	Nov 13	D
St.18-24	$08^{\circ} 00^{\prime} \mathrm{S}$	$0800^{\circ} 30^{\prime} \mathrm{E}$	2	8	H.m.	Adult (male)	Nov 13	D

Table 7-Sheet 5. Results of salinity experiment (Experiment 2) performed on larvae and adults of
Halobates micans (H. m.) HS: hours in survival under starvation on one of 5 brackish or fresh
waters with six salinity concentrations (A: sea water, 10%, A ': 9%, B: 8%, C: 6%, $\mathrm{D}: 4 \%$, $\mathrm{E}: 2 \%$, $\mathrm{F}: 0 \%$) ; "Date" when experiments started. (MR-11-07-Leg2: Oct $28-$ Dec 2,2011) Water temperature: $28.6 \mathrm{C}^{\circ}$; Air Temperature: $29.6 \mathrm{C}^{\circ}$

Latitude(N) Longitude(E) Exp.No.				HS	Species		Stage (sex)	Salinity conc..	
St.29-34	08 ${ }^{\circ} 00^{\prime}$ S	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	2	H. m.	Adult (female)	Nov 22	E
St.29-34	08\% ${ }^{\circ}$ ' ${ }^{\text {S }}$	080 ${ }^{\circ} 30^{\prime}$ E	3	3	2	H. m.	Adult (female)) Nov 22	E
St.29-34	08 ${ }^{\circ} 00^{\prime}$ S	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3		3	H. m.	$5^{\text {th }}$ instar	Nov 22	E
St.29-34	08 ${ }^{\circ} 00^{\prime}$ S	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	4	H. m.	Adult (male)	Nov 22	E
St.29-34	08 ${ }^{\circ} 00^{\prime}$ S	080 ${ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	4	H. m.	Adult (male)	Nov 22	E
St.29-34	08 ${ }^{\circ} 00^{\prime}$ S	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	5	H. m.	Adult (male)	Nov 22	E

St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	5	H. m.	Adult (female)	Nov 22	E
St.29-34	0800 ${ }^{\circ} \mathrm{S}$	080 ${ }^{\circ} 0^{\prime}$ E	3	2	H. m.	Adult (female)	Nov 22	F
St.29-34	080 ${ }^{\circ} 0^{\prime} \mathrm{S}$	080 ${ }^{\circ} 0^{\prime}$ E	3	2	H. m.	Adult (male)	Nov 22	F
St.29-34	08 ${ }^{\circ} 00^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	3	H. m.	Adult (female)	Nov 22	F
St.29-34	0800'S	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	4	H. m.	Adult (female)	Nov 22	F
St.29-34	080 ${ }^{\circ} 0^{\prime} \mathrm{S}$	$080{ }^{\circ} 30^{\prime} \mathrm{E}$	3	5	H. m.	Adult (male)	Nov 22	F
St.18-24	0800'S	$080^{\circ} 30^{\prime} \mathrm{E}$	3	5	H. m.	$5^{\text {th }}$ instar	Nov 22	F
St.29-34	08000'S	$0^{080} 30^{\prime} \mathrm{E}$	3	6	H.m.	Adult (male)	Nov 22	F

Fig. 1 : Positive correlation between dissolved oxygen ($\mu \mathrm{mol} / \mathrm{kg}$) and chlorophyll (relative fluorescent value) contents in surface sea water. Very clear positive correlation can be seen (Pearson's correlation test: $\mathrm{r}=0.803$, $\mathrm{p}<0.001, \mathrm{n}=51$). Such positive correlation means very low contents ratio of animals in comparison with plants.

Fig.2: Comparison of population density (number of individuals in all larval and adult stages $/ \mathrm{km}^{2}$) of Halobates micans when air temperature was more than $27.5^{\circ} \mathrm{C}$ at sampling site to the population density when it was less than $27.5^{\circ} \mathrm{C}$.

Fig.3: Comparison of population density (number of individuals / km^{2}) of larvae of Halobates (mostly H. micans; plus H. germanus) when air temperature was more than $27.5^{\circ} \mathrm{C}$ at sampling site to the population density when it was less than $27.5^{\circ} \mathrm{C}$.

Fig. 4: Correlative analysis of Super-cooling point (SCP) and Heat Coma Temperature shown by all specimens of Halobates micans collected at Stations 1-17 and applied to these measurements No correlation was shown (Pearson's correlation test: $\mathrm{r}=0.013, \mathrm{p}=0.883, \mathrm{n}=131$).

Photo 1: A trailing scene of Neuston-NET

Photo 2: Washing the "pants" of the Neuston net just after the trailing to collect all Halobates individuals into the round-shaped transparent aquarium.

Photo 3: An example of the sample of Neuston-NET trailing.

Photo 4: Example of larval and adult individuals of Halobates collected by a Neuston Net Sampling for 15 min .

Photo 5: An example of scene showing the heat paralysis experiment arena (on the left) and incubating aquaria filled with sea water Air and sea water temperature was kept within $29 \pm 2^{\circ} \mathrm{C}$ with air-conditioners or a heater.

Photo 6: A scene of measuring super cooling point (SCP) with automatic temperature recorders with a thermo-sensor consisting of nickel-bronze coupling and freezer in which temperature was kept at $-35^{\circ} \mathrm{C}$. When heat coma occurred for a specimen applied to the Heat Coma Experiment, ventral surface of thespecimen's thorax and abdomen was attached with the thermo-coupling at ventral surface of abdomen. Then the specimen was transferred into a box made of high-dense-type-polystyrene-form (another box can be seen on the freezer) and put into the freezer to measure SCP and ITSCP. See text for the detailed.

