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Numerical evidence of logarithmic regions in channel flow at Reτ = 8000
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Direct numerical simulations of channel flow up to Reτ = 8000 have been performed to
determine the existence of a logarithmic region in channel flow at high-Reynolds number. It
is notable that the logarithmic variations both in the mean velocity, U+ = (1/κ) ln(y+) + B

and the streamwise Reynolds stress, u+u+ = B1 − A1 ln(y/h) are first confirmed for Reτ =
8000, with κ = 0.387,B = 4.21 and A1 = 1.65,B1 = 1.23, where y is the distance from
the wall and h is the channel half-height. The logarithmic region of U+ locates between
300 < y+ < 1100 (y/h = 0.14) and that of u+u+ locates between 1200 (y/h = 0.15) <

y+ < 2000 (y/h = 0.25). Therefore, these logarithmic regions do not overlap with each
other. Furthermore, the region of kx

−1 law is studied without using the frozen turbulence
hypothesis in logarithmic regions of the mean velocity and the streamwise Reynolds stress.

DOI: 10.1103/PhysRevFluids.3.012602

I. INTRODUCTION

In this study, we focus on the logarithmic regions of the streamwise mean velocity and the
streamwise Reynolds stress in channel flow at a relatively high Reynolds number. The logarithmic
relation of streamwise mean velocity as the result of the overlap between the inner small scales and
outer large scales was first noted by Millikan [1] as

U+ = 1

κ
ln(y+) + B, (1)

where U is the mean velocity, y is the distance from the wall, κ is called the von Kármán constant, B
is an additive constant, and superscript + denotes the nondimensional quantity normalized by friction
velocity (uτ ) and kinematic viscosity (ν). The Kármán constant in channel flow was estimated as
0.37 [2] and 0.39 [3] by experiment, and was calculated as 0.384 ± 0.004 [4] by direct numerical
simulation (DNS) as well.

With regard to streamwise Reynolds stress, Townsend [5] and Perry et al. [6] suggested a
sufficiently high-Reynolds-number presupposition that the logarithmic variation in streamwise (and
spanwise) Reynolds stress has a log-law relation as Eq. (1), which is

u+u+ = B1 − A1 ln(y/h), (2)

where u is the streamwise velocity fluctuation, h is the boundary-layer thickness (or channel half-
height, or pipe radius), A1 is the Townsend-Perry constant, B1 is an additive constant, and the overbar
denotes the averaged value. This logarithmic variation is derived by the attached-eddy hypotheses
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[5,7] and the kx
−1 law [6] for the energy spectrum of the streamwise turbulent velocity, where kx is the

streamwise wave number. In pipe flow, Hultmark et al. [8] for the first time confirmed the logarithmic
variation of u+u+ at the region where it overlaps with that of U+; the values of A1 and B1 are 1.25 and
1.61, respectively. In addition, Marusic et al. [9] supported the existence of a universal logarithmic
region, where both the mean velocities and streamwise Reynolds stresses followed logarithmic
functions of distance from the wall in the Reynolds number range of 2 × 104 < Reτ < 6 × 105 for
boundary layers, pipe flow, and the atmospheric surface layer. Here, Reτ is the friction Reynolds
number based on the friction velocity and the boundary-layer thickness (or pipe radius).

In contrast, Agostini and Leschziner [10] argued the discrepancy of wall-normal heights between
logarithmic variations of u+u+ and U+ using the DNS database for channel flow at Reτ = 4200 [11].
However, the logarithmic variation of u+u+ cannot be strictly displayed at Reτ = 4200 [11] and 5200
[4] in channel flow. From the measurement in boundary layers [12–14], we assume that the sufficient
scale separation between near-wall structures and large-scale structures in the premultiplied spectrum
is substantialized for Reτ > 7000. In fact, Agostini and Leschziner [10] described that the streamwise
Reynolds stresses tended to establish a logarithmic decay for Reτ > 7000 in the experimental data by
Hutchins et al. [13], Hultmark et al. [8,15], and Rosenberg et al. [16]. Therefore, Reτ = 7000 might
be the lowest possible Reynolds number to study the logarithmic variation of u+u+ by means of the
DNS approach. In this study, we performed DNSs of fully developed channel flow up to Reτ = 8000.
As a result, the logarithmic variations both in the mean velocity and the streamwise Reynolds stress
in channel flow were confirmed. See Ref. [17] for the current DNS statistics.

II. DNS PROCEDURES AND NUMERICAL CONDITIONS

In the following section, the streamwise (x), wall-normal (y), and spanwise (z) turbulent velocities
are denoted as u, v, and w, respectively, with the mean velocity indicated by a capital letter.

The reported target flow is assumed to be a fully developed turbulent channel flow driven by the
constant mean pressure gradient in the streamwise direction. DNSs of the incompressible Navier-
Stokes equation are performed by the tenth-order accurate finite-difference method (tenth FD),
which is proposed by Morinishi et al. [18] for the stream- and spanwise directions, and by the
second-order finite-difference method (second FD) for the wall-normal direction on the full-staggered
grid systems. Time advancement is carried out by the Euler implicit scheme for the pressure term and
the second-order Adams-Bashforth scheme for the others, combined in the fractional-step procedure.
The pressure Poisson equation is directly solved by using a two-dimensional fast Fourier transform
for stream- and spanwise directions and a tridiagonal matrix algorithm for the wall-normal direction.

To detect the wavelength corresponding to 6δ (where δ = h is the boundary-layer thickness)
of the second peak in the streamwise premultiplied spectrum [12,13,16,19], the streamwise (x)
computational domain size in all cases is applied as 16h, where h is the channel half-height.

In a full turbulence simulation, the grid spacing corresponding to the resolution of the Kolmogorov
wave number (1/η) is required. In the current DNS, we ensured over twice finer resolution compared
to the Kolmogorov wave number in the wall-normal direction:

2π

2�y
>

2

η
. (3)

In contrast, the coarser grid resolutions than the Kolmogorov wave number have been adapted
in wall-parallel directions, which has been the case since the first DNS of channel flow reported by
Kim et al. [20]: �x+ ≈ 12 and �z+ ≈ 7. In the pseudospectral method adapted by previous DNS
studies [4,11,21–26], the effective spatial resolutions in the wall-parallel directions are in the ranges
from �x+ = 9 [4,23] to 22 [21] in the streamwise direction, and from �z+ = 5 [4] to 11 [21] in the
spanwise direction. To adapt the tenth FD for wall-parallel directions, a grid-sensitivity analysis was
conducted for the case of Reτ = 1000 [27,28].

From the results of this grid-sensitivity analysis [28], current DNS conditions of up to Reτ = 8000
are decided. In these conditions, the underestimation of the streamwise turbulent intensity affected
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TABLE I. Summary of simulation conditions. Here, Reτ = uτh/ν, friction Reynolds number; uτ , friction
velocity; h, channel half width; ν, kinematic viscosity; Ub, bulk mean velocity; Lx , streamwise computational
length; Lz, spanwise computational length; Nx(�x), Ny(�y), Nz(�z,), grid number (resolution) for stream (x),
vertical (y), and spanwise (z) directions, respectively. 10th/2nd FD denotes tenth (x,z)- and second (y)-order
accurate finite-difference method; SB denotes spectral (x,z) and B-spline (y) method; SC denotes spectral (x,z)
and compact finite-difference (y) method; and 2nd FD denotes second-order accurate finite-difference method
in all directions.

Name (method) Reτ Ub
+ Lx/h Lz/h Nx(�x+) Ny(�y+) Nz(�y+) T +/Reτ

YT1000 1000 19.9 16.0 6.4 1440 512 768 12.0
(10th/2nd FD) (11.1) (0.6–8.0) (8.3)
YT2000 1997 21.8 16.0 6.4 2880 1024 1536 10.0
(10th/2nd FD) (11.1) (0.6–8.0) (8.3)
YT4000 3986 23.4 16.0 6.4 5760 2048 3072 9.0
(10th/2nd FD) (11.1) (0.6–8.0) (8.3)
YT8000C 8016 25.0 16.0 6.4 8640 4096 6144 6.3
(10th/2nd FD) (14.8) (0.6–8.0) (8.3)
LM1000 [4] 1000 20.0 8π 3π 2304 512 2048 12.5
(SB) (10.9) (0.02–6.2) (4.6)
HJ2000 [24] 2003 21.8 8π 3π 4096 633 3072 10.3
(SC) (12.3) (0.3–8.9) (6.1)
BPO2000 [25] 2020 21.5 6π 2π 4096 768 2048 26.9
(2nd FD) (9.3) (0.03–8.3) (6.1)
LJ4200 [11] 4179 23.5 2π π 2048 1081 2048 15.0
(SC) (12.8) (0.3–10.7) (6.4)
BPO4100 [25] 4079 23.2 6π 2π 8192 1024 4096 8.5
(2nd FD) (9.4) (0.01–12.5) (6.2)
LM5200 [4] 5186 24.1 8π 3π 10240 1536 7680 7.8
(SB) (12.7) (0.5–10.3) (6.4)

by the spatial resolution was observed, in particular, for the wall-normal heights between y+ = 10
to 50. However, the streamwise premultiplied spectrum of u, which is one of the most primary
statistics in high Reynolds number effects on wall turbulence, does not appear to be affected by the
wall-parallel resolution. As such, the current DNS conditions can be reliably applied in the present
study for investigating the mean velocity and the streamwise Reynolds stress related to large-scale
structures in high Reynolds number conditions. The current DNS conditions are summarized in
Table I, where T denotes the time-integration length to obtain the turbulent statistics, and �x,�y,
and �z are the grid resolutions for the streamwise, wall-normal, and spanwise directions. Moreover,
the case names are named following Lee and Moser [4]. In Table I, previous high-Reynolds-number
DNSs [4,11,25,26] of channel flow are used as the reference data. The simulation at Reτ = 8000
have been initiated with the rough-resolution DNS field [29] at the total time-integration point
T +/Reτ = 8.0 with spatial resolutions of �x+ = 17.8, �y+ = 0.6−8.0, and �z+ = 8.9. After
the initial run (T +/Reτ = 3.5) to converge the effects of the changes in the spatial resolutions, the
production run (T +/Reτ = 6.3) was conducted to obtain the turbulent statistics. This time-integration
length of the production run corresponds to ten washout times, where one washout time is defined
as the time taken by a fluid particle with the mean velocity at the centerline to cross the streamwise
computational box (Lx = 16h). In a steady-state fully developed channel flow, the total shear stress
shows a liner profile as a function of the wall-normal height (y) as

1 − y+

Reτ

= −u+v+ + dU+

dy+ , (4)
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FIG. 1. Verification of statistical convergence; total shear balance (YT8000C), and residual of total shear
stress for all cases.

where −u+v+ denotes the Reynolds shear stress. To check statistical errors in DNS data, Thompson
et al. [30] used the following residual in shear stress balance:

ER(y+) = 1 − y+

Reτ

+ u+v+ − dU+

dy+ . (5)

Figure 1 shows the shear stress profiles in YT8000C and residuals (ER) for all cases. The total
shear stress profile in YT8000C shows a linear profile and ER of the current DNS database is less
than 0.05. From these results, time-integration lengths of the current DNS database are judged to be
larger than the least length to satisfy the stably turbulent statistics.

III. LOGARITHMIC VARIATION OF STREAMWISE MEAN VELOCITY
AND REYNOLDS STRESS

Figures 2(a) and 2(b) show the indicator function β = y+dU+/dy+(= 1/κ) and the test
function of Townsend’s prediction 
 = y+d u+u+/dy+ (= −A1), where plateau regions denote

FIG. 2. Logarithmic variations of mean velocity and streamwise Reynolds stress. Darker-shaded regions
denote the logarithmic regions in YT8000C. (a) Mean velocity: indicator parameter β(= 1/κ) and (b) streamwise
Reynolds stress: test function 
(= −A1).
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FIG. 3. Comparison with fitting equation of logarithmic variation in streamwise Reynolds stress and
the current DNS in YT8000C and the experiments of pipe flow [30,31]. Darker-shaded region denotes the
logarithmic region in YT8000C.

the logarithmic regions. In mean velocity profiles, logarithmic regions appeared in Reτ � 4000. In
YT4000, the indicator function β is 2.658 between 500 < y+ < 800 (y/h = 0.2); β is estimated
by the least-squares approximation with the error of mean square = 4.33 × 10−6. In the same way,
β is 2.583 between 300 < y+ < 1100 (y/h = 0.14) with the error of mean square = 2.85 × 10−5

in YT8000C. Thereby, the Kármán constant and the additive constant of Eq. (1) is κ = 0.376
and B = 3.89 for YT4000, and κ = 0.387 and B = 4.21 for YT8000C. Lee and Moser [4]
reported κ = 0.384 ± 0.004 and B = 4.27 between 350 < y+ < 830 (y/h = 0.16) for LM52000.
The experimental results are 0.37 [2] and 0.39 [3] in channel flow. The DNS results, thus, are
consistent with the experimental results.

On the other hand, the test function 
 shows the plateau region, that is equivalent to the logarithmic
behaviur of Eq. (2), is present only for the case of YT8000C. The wall-normal range is between
1200 (y/h = 0.15) < y+ < 2000 (y/h = 0.25), and the Townsend-Perry constant [5,7] is estimated
as A1 = 1.65 with the error of mean square = 1.48 × 10−3. The additive constant of Eq. (2) is also
estimated as B1 = 1.23. Therefore, the present coefficients A1 and B1 have the certain differences
with those of experimental results [8,9].

In comparison with the logarithmic region of the mean velocity, as shown in Fig. 2(b), 
 has
the steep gradient at y+ < 1100, where the mean velocity has the logarithmic variation. Hence, the
logarithmic variations of the mean velocity and the streamwise Reynolds stress cannot be confirmed
at the same location.

Figure 3 shows the comparison of the streamwise Reynolds stress with experimental results
in pipe flow [31,32], with the fitting equation suggested for pipe flow and boundary layers by
Hultmark et al. [8] and Marusic et al. [9], respectively. As reported by Ng et al. [33], the streamwise
Reynolds stress indicates similar statistical features in both pipe and channel flows. They checked
this similarity in relatively low Reynolds number (Reτ < 3000), but it may be expected in higher
Reynolds number. The profile of YT8000 agrees reasonably well with the experimental data in pipe
flow at Reτ = 7970 [31,32], When compared with the fitting equation for pipe flow at Reτ = 98190
by Hultmark et al. [8], the logarithmic variation for YT8000C has a large difference as mentioned
above in the Townsend-Perry constant because of the wall-normal height of the logarithmic regions.
The log-arithmic regions in YT8000C and experiments [31,32] are located around y/h ≈ 0.2. By
contrast, Hultmark et al. [8] and Marusic et al. [9] reported that the logarithmic regions are located
around y/h ≈ 0.1. This difference may be caused by the Reynolds number effects. In fact, the
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FIG. 4. Streamwise premultiplied spectrum of u at overlap region: 90 < y+ < 150. Darker-shaded regions
denote the kx

−1 regions. (a) Reτ = 4000 (YT4000) and (b) Reτ = 8000 (YT8000C).

streamwise Reynolds stress of Reτ = 14400 in experiment [31,32] extends its logarithmic region
closer to the wall. Moreover, the fitting equation for the boundary layer at Reτ = 18010 by Marusic
et al. [9] comes near the profile of YT8000C.

IV. kx
−1 LAW

Figure 4 shows the streamwise premultiplied spectra of u in YT4000 and YT8000C. The region
is limited to 90 < y+ < 150, where Nickels et al. [34] confirmed the kx

−1 law. In this study, the
streamwise premultiplied spectrum of u : kxEuu is defined as follows:

uu =
∫ ∞

0
kxEuu(kx)d{ln (kx)}. (6)

Here kx (= 2π/λx,λx is the streamwise wavelength) is the streamwise wave number. As illustrated
in Fig. 4, the regions of the kx

−1 law are marked as the darker-shaded squares.
In each case, the first peak is observed at λx

+ ≈ 1000−2000 which is caused from the near-wall
cycle of streaks and quasistreamwise vortices [35–37]. Besides, the weak second peak appears
at λx

+ ≈ 10000 in YT2000 (not shown). With increasing of Reτ , this second peak shifts from
λx

+ ≈ 10000 to the longer wavelength, and its amplitude becomes larger than the first peak in
YT8000C. Consequently, the region of the kx

−1 law is clearly observed in YT4000 but it becomes
narrower in YT8000C. These tendencies are consistent with experimental result [16] and DNS [4].
It is hard to observe the clear long-range kx

−1 law region even in the present Reynolds number.
This reason is argued as the results from the finite value of Reynolds number and aliasing problem
associated with one-dimensional spectra by Davidson et al. [38].

TABLE II. Wavelengths of peaks in the premultiplied spectrum at the overlap region: 90 < y+ < 150.

First peak Second peak

Reτ kxh λx
+ λx/h kxh λx

+ λx/h

1000 4.7 1337 1.3
2000 8.6 1461 0.7 1.2 10472 5.2
4000 14.5 1733 0.4 1.2 21481 5.4
8000 27.5 1828 0.2 1.6 32016 4.0
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FIG. 5. Contour lines of streamwise premultiplied spectra of u in the y+ − λx
+ plane with profiles of

turbulent intensity of u. Contour maps are lined from 0.1 (blue) to 1.95 (red); spacing in 0.05. Darker-shaded
regions denote the kx

−1 regions. Thin broken lines show kx
−1 limits λx = 15.7y, from y+ > 100. Blue dotted

lines denote λx = 100y [41]. Red dotted lines denote y+ = 3.9Reτ
0.5 [39,40]. (a) Reτ = 1000, (b) Reτ = 2000,

(c) Reτ = 4000, and (d) Reτ = 8000.
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The wavelengths of the first and second peaks in the premultiplied spectrum for the streamwise
Reynolds stress are summarized in Table II.

V. DISCUSSION AND CONCLUSION

Although there have been several experiments and numerical simulations of channel flow, the
highest friction Reynolds number is limited to Reτ = 5900 by Schultz and Flack [39] and 5200 by
Lee and Moser [4] in experiments and simulation, respectively. These Reynolds numbers were not
sufficiently high to confirm the logarithmic variation of the streamwise Reynolds stress. In this study,
we can confirm the logarithmic variations both in the mean velocity and the streamwise Reynolds
stress for Reτ = 8000. This situation is first verified for the present high Reτ = 8000 in channel
flow. However, their logarithmic regions do not overlap with each other.

The logarithmic mean velocity profile of Eq. (1) is observed between 300 < y+ < 1100(y/h =
0.14). The minimum wall-normal height in the logarithmic region of the streamwise mean velocity
corresponded to y+ ≈ 3.9Reτ

0.5 [40,41] and the second peak of premultiplied spectra is also observed
around this wall-normal height [see Fig. 5(d)]. In YT2000 and YT4000 [see Figs. 5(b) and 5(c)],
the second peaks of premultiplied spectra are also observed in this wall-normal height with y+ ≈
3.9Reτ

0.5. Hwang [42] reported that the most energetic part of the premultiplied spectra gradually
extends to the wall along the linear ridge; λx ≈ 100y. However, in current DNSs, this trend changes
toward the long wavelength with increasing of Reτ .

By contrast, the logarithmic variation of the streamwise Reynolds stress is observed between
1200 (y/h = 0.15) < y+ < 2000 (y/h = 0.25). In Fig. 5, the darker-shaded regions correspond to
the kx

−1 law. The kx
−1 law regions are located above the dashed line (black); λx = 15.7y [8,12]. As

indicated by Agostini and Leschziner [10], the streamwise Reynolds stress in Fig. 5(d) shows the
plateau variation between the kx

−1 law and the second peaks of premultiplied spectra regions. To
explain the logarithmic and constant portions in the profile of streamwise Reynolds stress, Agostini
and Leschziner [10] proposed the modified attached-eddy hypothesis associated with the detached
eddies [43].
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