
Takemura et al. Earth, Planets and Space  (2016) 68:149 
DOI 10.1186/s40623-016-0527-9

LETTER

Systematic difference 
between first-motion and waveform-inversion 
solutions for shallow offshore earthquakes due 
to a low-angle dipping slab
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Abstract 

Systematic difference between first-motion and waveform-inversion solutions for shallow offshore earthquakes was 
examined by using the seismograms of the 2016 Off Mie (Mw 5.8) earthquake occurred at a depth of 14 km south-
east off of the Kii peninsula, central Japan. Observed seismograms illustrated first arrivals with an apparent velocity of 
7.2 km/s, which is faster than crustal P waves. The apparent velocity and polarization pattern of the first arrivals were 
reproduced by a finite-difference method simulation incorporating the three-dimensional Philippine Sea slab. The 
first arrivals consist of P waves radiated downward from the source, passing the oceanic Moho as head waves. Thus, 
a first-motion analysis, assuming a one-dimensional structure, causes incorrect estimations of the focal mechanisms 
and hypocenter depths, which tend to be deeper than the actual ones. Our result possibly indicates that the seismic-
ity above the oceanic Moho was underestimated in the previous catalogs.
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Introduction
The Philippine Sea slab (PHS) is subducting beneath south-
western Japan along the Nankai Trough at a rate of 2–6 cm 
per year (e.g., Seno et al. 1993; Heki and Miyazaki 2001). 
Due to the subduction of the PHS, large (M > 8) interplate 
earthquakes repeatedly occurred at recurrence intervals of 
approximately 100–150 years (e.g., Ando 1975). Indeed, in 
this area, a slip deficit was widely documented based on 
GPS Earth Observation Network (GEONET) and seafloor 
geodetic observations (e.g., Hashimoto et al. 2004; Yokota 
et al. 2016). This means that stress is being accumulated in 
preparation for future large earthquakes. On the basis of 
the current slip deficit rate and assuming other geophysi-
cal parameters such as the recurrence interval and the fric-
tion law, significant tsunamigenic earthquake scenarios 
have been proposed (e.g., Hori et al. 2004; Hok et al. 2011; 
Kim et al. 2016). In addition to seismic velocity structure 

and seismicity, several phenomena such as non-volcanic 
tremors, very low-frequency earthquakes, and slow-slip 
events have been extensively studied around the subduct-
ing PHS slab in order to understand the mechanisms of the 
large interplate earthquakes (e.g., Ozawa et al. 2002; Obara 
2002; Shiomi et  al. 2006, 2008; Shelly et  al. 2007; Hirose 
et al. 2008; Citak et al. 2012; Matsuzawa et al. 2013; Kim 
et al. 2016; Kita and Matsubara 2016; Takagi et al. 2016).

Referring from combined catalog of the ISC–GEM cata-
log (Storchak et al. 2013) and the unified hypocenter cata-
log of the Japan Meteorological Agency (JMA) over the 
1909–2015 period, the seismicity in this region was very 
low except for the 1944 Tonankai (MJMA 7.9), 1946 Nan-
kai (MJMA 8), 2004 Off Kii peninsula (MJMA 7.4), and 2009 
Suruga Bay (MJMA 6.5) earthquakes and their aftershocks. 
On April 1, 2016, a shallow Mw 5.8 earthquake (2016 Off 
Mie earthquake; Event C in Fig.  1) suddenly occurred 
at the southeast off of Kii peninsula, central Japan. The 
epicenter of the 2016 Off Mie earthquake is very close 
to that of the 1944 Tonankai earthquake (yellow star in 
Fig. 1). During this earthquake, seismograms were widely 
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recorded by dense seismic networks, such as high-sensi-
tivity seismograph network (Hi-net) and full-range seis-
mograph network (F-net) operated by National Research 
Institute for Earth Science and Disaster Resilience, Japan 
(NIED) (Okada et  al. 2004). First-motion polarization 
analysis, a useful tool for studying small earthquakes 
(e.g., Thurber et  al. 2006; Kato et  al. 2011), gave a nor-
mal faulting for this earthquake mechanism (blue focal 
sphere in Fig.  1). On the other hand, an F-net routine 
moment tensor (MT) solution (Fukuyama et  al. 1998), 
which is estimated by inversion analysis using the long-
period displacement waveforms, was characterized by a 
reverse faulting mechanism (red focal sphere in Fig.  1). 
Similar differences in the estimated solutions commonly 
appeared for other offshore earthquakes, showing almost 
opposite directions of pressure and tension axes. Hori 
(2002) suggested that such difference in focal mechanism 
solutions for offshore earthquakes might be caused by the 
difference between initial and total rupture processes. If 
this was the major cause, the difference should appear in 
larger earthquakes as well, since they have complex source 
rupture processes. In our study region, however, the dif-
ference appears irrespective of the event magnitudes, and 

first-motion analysis tended to overestimate hypocenter 
depths (see Additional file 1: Table S1). This suggests that 
the difference may primarily be due to a characteristic 
subsurface structure, rather than the rupture process.

Using Hi-net waveforms during the 2016 Off Mie 
earthquake, we propose that the misestimation of focal 
mechanisms and depths for first-motion polarization 
analysis is caused by subsurface structure related to the 
geometry of the low-angle dipping slab. Our hypothesis 
is validated via finite-difference method (FDM) simula-
tions of seismic wave propagation using a three-dimen-
sional (3D) heterogeneous velocity structure model. We 
also discuss the effects of the dipping slab on hypocenter 
location and seismicity by first-motion analysis in the 
other subduction zones.

Observed first‑motion polarization 
and propagation during the 2016 Off Mie 
earthquake
During the 2016 Off Mie earthquake, almost all sta-
tions observed upward polarizations in the first motion 
(Fig.  1b), which could not be reproduced by the F-net 
MT solution in a homogeneous medium. Similar features 
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were found in four other earthquakes (Additional file 1: 
Figure S2). Furthermore, although most hypocenter 
depths estimated by first-motion analysis were deeper 
than the depth of the oceanic Moho of the PHS (~19 km), 
the MT solutions indicated that the earthquakes 
occurred at the interface or within the oceanic crust of 
the PHS (see Additional file  1: Table S1 and colors of 
focal spheres in Additional file 1: Figure S1).

Record sections of vertical velocity seismograms at Hi-
net stations (Fig.  2) revealed how upward first motions 
propagated through the heterogeneous subsurface 
structure of the Nankai subduction zone. The frequency 
response of the Hi-net sensors was corrected using the 
software of Maeda et al. (2011). Upward first arrivals with 
an apparent velocity of 7.2  km/s were clearly identified 
at epicentral distances of 50–180  km, while the arrival 
times could not be reproduced by the theoretical travel 
time using the one-dimensional (1D) velocity structure 
(Ukawa et  al. 1984) of the Hi-net routine hypocenter 
determination (Additional file 1: Figure S3).

Since the high-velocity PHS exists at shallower depths 
(10–15  km) beneath the epicenters of the analyzed off-
shore earthquakes, the velocity structure is completely 
different from the 1D velocity structure model. In the 
case where a high-velocity oceanic mantle exists beneath 
the hypocenters, the rays of the first arrivals in land-
area stations should pass through the oceanic Moho of 
the PHS as a head wave (hereafter called “PPHS”) with a 

faster apparent velocity. This might cause misestimations 
of the takeoff angles from a hypocenter calculated with 
the Hi-net 1D velocity structure. Furthermore, to fit such 
fast apparent velocity around land area, the hypocenter 
depths might be estimated to be deeper than the actual 
ones (Additional file 1: Figure S4).

Simulation of seismic wave propagation in the 3D 
heterogeneous model
The observed seismograms suggest that the PPHS gener-
ated from the down-going P waves becomes first motions 
at land stations and is a major cause of the incorrect esti-
mations of focal mechanisms and depths for first-motion 
solution. Our hypothesis was examined using 3D FDM 
simulations of seismic wave propagation for the 2016 Off 
Mie earthquake, in which we incorporated the 3D geom-
etry of the subducting PHS. The 3D model of the FDM 
simulation covered a volume of 512 ×  512 ×  128  km3 
(enclosed by red square in Fig. 1a), which was discretized 
with grid intervals of 0.2 and 0.1  km in the horizontal 
and vertical directions, respectively. Technical details of 
the simulation, such as FDM scheme, solid/air boundary 
conditions, and formulation of the anelastic attenuation 
are described in Takemura et al. (2015a).

The 3D velocity structure model was constructed based 
on the Japan Integrated Velocity Structure Model (JIVSM; 
Koketsu et al. 2008, 2012), which is widely used in many seis-
mological analyses across the Japan Islands (e.g., inversion of 
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source rupture process, evaluation of strong ground motion, 
and simulation of seismic wave propagation) (e.g., Koketsu 
et al. 2011; Iwaki et al. 2013; Maeda et al. 2013; Takemura 
et al. 2015b, c). Although the velocity model in the offshore 
region has relatively large uncertainties, upper surface of 
the PHS from JIVSM is consistent with other models (e.g., 
Hirose et al. 2008; Citak et al. 2012; Nakamura et al. 2015). 
Since we focused our attention on the first motions and 
their apparent velocities at land Hi-net stations, our model 
did not include low-velocity (VS < 2.9 km/s) sediments and 
seawater layers (VP = 1.5 km/s). The physical parameters of 
each layer are listed in Additional file 1: Table S2. Our 3D 
FDM was able to examine seismic wave propagation for fre-
quencies less than 2 Hz under these settings.

The seismic source for the 2016 Off Mie earthquake was 
represented by a single-cycle Küpper wavelet function 
(Mavroeidis and Papageorgiou 2003) with a dominant fre-
quency of 1 Hz. A double-couple point source for this event 
was assumed following the Hi-net first-motion and F-net 
MT solutions (see Event C in Additional file 1: Table S1), 
which were located within the oceanic crust of assumed 
velocity structure model. Here we note that since our simu-
lation did not include small-scale velocity heterogeneity 
within the crust and realistic source time function, which 
might be required to achieve more accurate simulation for 
higher frequencies (≥1 Hz), we focus our attention on first-
motion polarization, apparent velocity, and its transition.

Figure  3 shows the spatial distributions of the first-
motion polarizations derived from the 3D FDM simula-
tions using F-net MT and Hi-net first-motion solutions. 
We also conducted 3D FDM simulation of F-net MT 
solution within the Hi-net 1D velocity structure model 
as a reference. In the simulation of 1D model (Fig. 3a), 
downward motions, which did not appear in the obser-
vation of land areas, were found at epicentral distances 
of 50–150  km. The reproducibility of the observed 
polarization pattern was significantly improved by 
introducing a 3D model (Fig.  3b). Slight discrep-
ancy around the southwest of Kii peninsula could be 
improved by changing more suitable velocity structure 
or source parameter (later discussed). Hi-net first-
motion solution within the 3D model also well repro-
duced observed first-motion polarizations (Fig.  3c). 
These results indicate that it is difficult to determine 
focal mechanisms of shallow offshore earthquakes by 
only using first-motion polarizations at land-area sta-
tions. To determine focal mechanisms of shallow off-
shore earthquakes, we should analyze long-period 
displacements, which are less sensitive to local hetero-
geneities along propagation path. Comparisons of long-
period displacement seismograms (Fig.  3d) at N.ABUF 
and N.NRWF suggest a thrust-faulting mechanism, 
rather than normal-faulting mechanism.

Figure 4a shows simulated waveforms of vertical com-
ponent along X–X′ and Y–Y′ profiles. Although all the 
travel times were slightly delayed compared to the obser-
vations (red lines), the PPHS and Pn phases and their tran-
sition at epicentral distance of 180 km were clearly found 
along the X–X′ profile (top panel of Fig.  4a). These fea-
tures are also illustrated in the snapshot of seismic wave-
field along the X–Xʹ profile (Fig. 4b).

Discussion and conclusions
We conclude that the systematic difference between first-
motion and waveform-inversion solutions for shallow 
offshore earthquakes is mainly caused by the subduct-
ing PHS, which generates a PPHS phase with an apparent 
velocity of 7.2 km/s and causes the misestimations of the 
takeoff angles and hypocenter depths. To fit such a fast 
apparent velocity around land areas in the conventional 
one-dimensional studies, the hypocenter depth is overes-
timated compared to the actual one.

Around southwest of the Kii Peninsula (toward Y–Y′ pro-
file), a discrepancy between observation and simulation was 
recognized at epicentral distances less than 100 km (Fig. 3b). 
The apparent velocity of the simulated first motions along 
the Y–Y′ profile correlates with the theoretical travel times 
from the 1D velocity structure model, rather than the 
observed ones (bottom of Fig.  4a). Thus, this discrepancy 
could be reduced by introducing more accurate velocity 
structure models around the offshore region or by chang-
ing the source parameters such as the hypocenter depth and 
the fault dip angle. Geometries of the subducting slab are 
strongly controlled by dip angles of subduction. The effects 
of key parameter, the “dip angle of subducting slab,” were 
investigated via two-dimensional (2D) FDM simulations 
using a simple 2D slab model. The 2D model covered a zone 
of 409.6 × 128 km2, which was discretized with a uniform 
grid interval of 0.1 km. The geometry of the 2D subducting 
oceanic crust and mantle is shown in the upper left of Fig. 5 
and is then embedded into the background Hi-net 1D veloc-
ity structure model (Additional file 1: Figure S3). The seis-
mic velocities and thicknesses of oceanic crust and mantle 
are shown in right bottom of Fig. 5. In order to focus on the 
PPHS propagation pattern, an isotropic P wave line source 
(explosion source; Mxx = Mzz =  1.0) was assumed within 
the oceanic crust of 2D model (14 km). We examine relation 
between PPHS propagation and dip angle of subducting slab.

Figure  5 shows the vertical seismograms derived from 
the 2D simulations for various dip angles of subducting 
slab (θ =  5, 10, 20 and 30°). Since explosion source was 
employed, upward first motions clearly propagated along 
the profile. In the cases of dip angle θ = 5°, which is gen-
tler dip angle of the PHS model used in 3D simulations, 
PPHS with an apparent velocity of approximately 7.2 km/s 
(Fig.  5, red solid line) was widely observed at epicentral 
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distances of 60–180  km. As the dip angle θ increased, 
direct P waves propagating through the crust (Fig.  5, 
blue line) became dominant. In particular, for dip angles 

greater than θ = 30°, PPHS was only observed within a nar-
row distance range (140–180 km). This indicates that the 
effects of PPHS propagation on conventional determination 
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of the hypocenter location and mechanism could be neg-
ligible in the following cases: (1) subduction zones with 
high (>20–30°) dip angles (e.g., Kuril, Izu-Bonin-Mariana 
and Tonga subduction zones) and (2) earthquakes occur-
ring near/beneath land area.

In other subduction zones with low-angle (<20°) dipping 
slabs such as Cascadia, Mexican, and Peru–Chile subduc-
tion zones (e.g., Hayes et  al. 2012), large (M  >  8) thrust 

earthquakes have also repeatedly occurred at recurrence 
intervals of several 100 years. Seismicity and focal mecha-
nisms near the slab interface are very important for con-
sidering such large earthquakes. Our findings suggest the 
possibility of underestimation of the seismicity above the 
oceanic Moho in such subduction zones with low-angle 
dipping slabs. Furthermore, low-angle dipping slabs also 
have a potential to affect seismic wave propagations and 
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strong ground motions (e.g., Furumura and Singh 2002; 
Takemura et  al. 2015b, c). In future studies, it would be 
important to precisely estimate the seismicity and charac-
teristics of seismic wave prorogation by using the appro-
priate 3D subsurface structure model in order to overcome 
the misestimation of the source mechanisms and the 
hypocenter locations around low-angle dipping slabs.
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