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S U M M A R Y
In high-frequency seismograms of small earthquakes, we clearly see the excitation of long last-
ing coda waves and the envelope broadening of an S-wavelet with travel distance increasing.
We can interpret those phenomena resulting from scattering by random inhomogeneities dis-
tributed in the earth medium. Those phenomena have been theoretically studied by stochastic
methods, which deal with velocity inhomogeneities as random media. As a simple mathe-
matical model, we study the propagation of a scalar wavelet for the spherical radiation from
a point source in 3-D von Kármán-type random media, of which the power spectral density
function (PSDF) decreases according to a power-law higher than the corner wavenumber.
Our objective is to propose a method to synthesize the wavelet intensity time trace, the mean
square amplitude trace, at a given travel distance by using statistical parameters characterizing
the PSDF and the centre wavenumber of the wavelet. When the phase shift is small, we can
use the Born approximation to calculate the non-isotropic scattering coefficient representing
the scattering power per unit volume. Using the scattering coefficient in the radiative transfer
equation (RTE), we are able to synthesize the wavelet intensity time trace. When the centre
wavenumber increases in the power-law spectral range, however, we often face the situation
of a large phase shift, where the Born approximation is inapplicable, but we are able to use the
Markov approximation based on the parabolic approximation. It well explains the intensity
time traces showing envelope broadening with peak delay due to multiple scattering around the
forward direction and the wandering effect caused by travel time fluctuations; however, it fails
to explain rich coda waves composed of scattered waves in wide angles. In such a case, here, we
newly propose the spectrum division method as follows: at first, taking the centre wavenum-
ber with a tuning parameter as a reference, we divide the random medium spectrum into the
low- and high-wavenumber spectral (long- and short-scale) components. The second step is
to synthesize the intensity time-trace by using the RTE with the Born scattering coefficient
for the short-scale component. The third step is to calculate the envelope broadening and the
wandering effects due to the long-scale component. As the fourth step, at each travel distance,
we convolve the intensity time trace calculated by the RTE with the envelope broadening and
wandering effects and the source function, which gives the intensity time trace reflecting the
scattering contribution of all the spectral components. In parallel, realizing random media for
given statistical parameters, we conduct finite difference (FD) simulations of waves through
them for the spherical radiation of a Ricker wavelet from a point source. We confirm that
synthesized intensity time traces well explain averaged FD simulation intensity traces from
the onset through the peak to coda for a specific case. Those syntheses will be a theoretical
basis for the study of random velocity inhomogeneities in the earth medium from the analysis
of high-frequency seismic waves of small earthquakes.
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1 I N T RO D U C T I O N

In high-frequency seismograms of small earthquakes, long lasting coda waves appear after the direct arrival and the S-wavelet shows
peak delay from the onset and envelope broadening with travel distance increasing. Those phenomena have been investigated as results of
scattering by random inhomogeneities distributed in the solid earth medium (e.g. Aki & Chouet 1975; Kopnichev 1975; Sato 1977; Rautian &
Khalturin 1978; Sato 1984, 1989; Hoshiba et al. 1991; Zeng et al. 1991; Gusev & Abubakirov 1996). There have been many studies putting
focus on the smooth variation of wave intensity, mean square (MS) envelope, disregarding their complex phase variation. Wave propagation
through inhomogeneous media of small fractional velocity fluctuations has been theoretically studied by introducing an ensemble of random
media (e.g. Chernov 1960; Rytov et al. 1989; Ishimaru 1997; Margerin 2005), where random media are statistically characterized by their
power spectral density function (PSDF).

In most cases, the PSDF of random media is often supposed to be a Gaussian-type spectrum or a von Kármán-type spectrum having a
power-law decay at large wavenumbers. The former is mathematically tractable, however, the latter is more suitable as a model representing
the real earth medium. In the shallow crust, measurements of acoustic well-log data clearly reveal a power-law decay spectrum, where the
exponent of the power-law decay varies depending on lithological condition and the power-law spectral range strongly depends on the sample
length (e.g. Wu et al. 1994; Holliger 1996; Shiomi et al. 1997). Peak delay measurements of S-wave envelopes of regional earthquakes have
revealed that the exponent of the power-law decay in the lithosphere, especially beneath active volcanoes, varies in relation with seismotectonic
setting (e.g. Obara & Sato 1995; Gusev & Abubakirov 1999; Petukhin & Gusev 2003; Takahashi et al. 2007, 2009; Tripathi et al. 2010). The
PSDF of random velocity inhomogeneity in the solid earth is different from the Kolmogorov spectrum of the refractive index fluctuation of
the atmosphere that has a constant exponent −11/3 (e.g. Andrews & Phillips 2005). Estimated characteristic scales of randomness are less
than 1 km in the crust (e.g. Yoshimoto et al. 1997; Sens-Schönfelder et al. 2009; Calvet & Margerin 2013); however, they are longer than 1 km
or more in the lithosphere and the upper mantle (e.g. Shearer & Earle 2004; Saito et al. 2005; Mancinelli et al. 2016). Those observations
suggest that it seems natural to use von Kármán-type random media as a plausible model of random velocity inhomogeneities in the solid
earth.

As a simple mathematical model, we study the propagation of a scalar wavelet with a centre wavenumber kc for the spherical radiation
from a point source in 3-D von Kármán-type random media of order κ with the average velocity V0. Their PSDF is characterized by a small
MS fractional fluctuation ε2 � 1 and a corner wavenumber at a−1. The PSDF obeys a power-law m−2κ−3 for wavenumber m � a−1. Our
objective is to propose a method to synthesize wavelet intensity time traces at a given travel distance by using statistical parameters ε2, a, κ ,
V0 and kc.

We often use the Born approximation to calculate the scattering coefficient representing the scattering power per unit volume. Using
the scattering coefficient in the radiative transfer equation (RTE), we are able to calculate the intensity time traces that reflect multiple non-
isotropic scattering effect (e.g. Hoshiba 1995; Gusev & Abubakirov 1996; Haney et al. 2005; Margerin 2005; Wegler et al. 2006; Przybilla
& Korn 2008; Sens-Schönfelder et al. 2009; Calvet & Margerin 2013). Practical calculation is done by using the Monte Carlo simulation
method. Good coincidence between synthesized intensity traces with those calculated from FD simulations is reported (e.g. Wegler et al. 2006;
Przybilla & Korn 2008).

Taking the scattering of a plane wave with wavenumber kc by a single high-velocity sphere with radius a and velocity V0(1 + ε) in a
homogenous medium with velocity V0, where ε � 1, we recall the applicable condition of the Born approximation. The basic assumption is a
smallness of the phase shift in the scattering obstacle, which is always valid when akc � 1; however, we have to seriously consider the phase
shift in the obstacle as akc increases. According to the distorted Born approximation based on the parabolic approximation, the phase shift at
the centre of the obstacle is εakc (e.g. Landau & Lifshitz 2003, p. 543). It means that the Born approximation is applicable if ε2a2k2

c � 1.
Speculating from the above study, even for scattering through random media, we may say that the Born approximation is applicable in the
RTE only when ε2a2k2

c � 1. The same condition is necessary for the derivation of the RTE from the Bethe–Salpeter equation for random
media by using the Bourret approximation for the ladder approximation (e.g. Rytov et al. 1989, p. 151)

When the centre wavenumber is in the power-law spectral range, akc > 1, we often face the situation where ε2a2k2
c becomes the order of

1 or larger, which is abbreviated as ε2a2k2
c � O(1). In such a case, we can calculate the wave intensity trace using the Markov approximation,

which is a stochastic extension of the phase screen method on the basis of the parabolic approximation (e.g. Williamson 1972; Shishov 1974;
Lee & Jokipii 1975a,b; Sreenivasiah et al. 1976; Sato 1989, 2008; Fehler et al. 2000; Saito et al. 2002; Korn & Sato 2005; Emoto et al. 2010;
Sawazaki et al. 2011; Emoto et al. 2012). This method well explains the peak delay from the onset and the envelope broadening of the wavelet
produced by successive multiple scattering in a narrow angle around the forward direction; however, this method has difficulty in explaining
rich coda waves composed of scattered waves into wide angles.

Here, we propose a new method, which will be referred to the spectrum division method, to synthesize intensity time traces especially for
the case of akc > 1 and ε2a2k2

c � O(1) as follows: The first step is to divide the random medium spectrum into the low- and high-wavenumber
spectral (long- and short-scale) components by taking ζkc as a reference, where ζ is a tuning parameter (Sato 2016, refer to Paper I in the
following). The second step is to synthesize the intensity time-trace by using the RTE with the Born scattering coefficient for the short-scale
component. The third step is to calculate the envelope broadening effect and wandering effect due to the long-scale component by using the
Markov approximation. The fourth step is to convolve the envelope broadening and wandering effects with the intensity trace calculated by
the RTE in the previous step and the source function in the time domain. The obtained intensity traces reflect all the scattering contribution of
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Figure 1. Log–log plot of PSDF versus wavenumber (left), and linear plot of ACF versus lag distance (right) for von Kármán-type random media. Grey broken
lines are Gaussian-type for a comparison.

the whole spectrum of random media. Then, we compare synthesized intensity time traces for a Ricker wavelet source with those calculated
by using FD simulations. At the end, we discuss unsolved problems and possible developments.

2 S C A L A R WAV E S I N V O N K Á R M Á N - T Y P E R A N D O M M E D I A

2.1 Scalar wave equation

Scalar wave u(x, t) is governed by the wave equation for a medium characterized by wave velocity V (x) = V0(1 + ξ (x)):

�u − 1

V 2
0

∂2
t u + 2

V 2
0

ξ∂2
t u = 0, (1)

where V0 is the average velocity and ξ is a random fractional fluctuation. If there is a source radiation, we put the source term on the right-hand
side. We imagine an ensemble of random media {ξ}, where 〈ξ〉 = 0. Angular brackets 〈...〉 mean an ensemble average. Randomness is
supposed to be statistically homogeneous, isotropic and small, ε2 ≡ 〈ξ 2〉 � 1. We statistically study the propagation of the intensity 〈u2〉 of a
wavelet with the centre wavenumber kc = ωc/V0 through random media. Paper I studied the energy density

〈
u̇2

〉
, which is equal to ω2

c

〈
u2

〉
for

monochromatic waves.

2.2 von Kármán-type random media

The PSDF of von Kármán-type random media of order κ is given by

P(κ, m) = P (κ, m) = 8π
3
2 
(κ+ 3

2 )ε2 a3


(κ)(1+a2m2)κ+ 3
2

for κ > 0, (2a)

which shows a power-law decay at wavenumbers higher than the corner at a−1. Its Fourier transform, the autocorrelation function (ACF) is

R(κ, x) = R(κ, r ) = 21−κ


(κ)
ε2

( r

a

)κ

Kκ

( r

a

)
for κ > 0, (2b)

where Kκ denotes a Bessel function of the second kind, and ε2 = R(κ , 0).
Fig. 1 shows PSDF’s and ACF’s for different κ values, where an arrow indicates the wavenumber kc for the frequency fc = 3 Hz as

an example. We will use ε = 0.05, a = 5 km and V0 = 4 km s−1 in the following simulations. At large wavenumbers, the PSDF for κ = 1
is smaller than that for κ = 0.1; however, it is still larger than the Gaussian PSDF (grey broken line). The ACF for κ = 1 shows a smooth
variation near the zero lag-distance; however, the ACF for κ = 0.1 has a sharp peak at zero lag-distance.

3 S T O C H A S T I C S Y N T H E S I S O F I N T E N S I T Y T I M E T R A C E

3.1 Radiative transfer equation using the Born scattering coefficient

3.1.1 Radiative transfer equation

For spherical (isotropic) and impulsive radiation from a point source at the origin in a 3-D scattering medium, the directional distribution
of intensity f of centre wavenumber kc to direction q at (x, t), where |q| = 1, is governed by the following differential and integral RTE
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(e.g. Ishimaru 1997, eq. 7.30) :

∂t f (kc, x, t, q) + V0q∇ f (kc, x, t, q) = −g0(kc)V0 f (kc, x, t, q) + V0

4π

∮
g

(
kc, ψ(q, q ′)

)
f
(
kc, x, t ; q ′) d�q ′ + 1

4π
δ (x) δ (t) , (3)

where g(kc, ψ(q, q ′)) is a scattering coefficient as a function of scattering angle ψ between q and q ′. Symbol d�q ′ is a solid angle element
to direction q′, and g0(kc) ≡ 1

4π

∮
g(kc, ψ(q, q ′))d�q ′ is the total scattering coefficient. The left-hand side shows an advection equation, and

three terms in the right-hand side represent the scattering loss, sum of scattering contributions from different directions, and the isotropic unit
source radiation. The integral of f over solid angle gives the intensity propagator of the scattering medium:

G R (kc, x, t) ≡
∮

f (kc, x, t ; q) d�q . (4)

The space integral is always conserved,
� ∞

−∞ dxG R(κ, kc, x, t) = 1. The resultant GR contains both coherent wavelet (direct wavelet) intensity
and scattered wave intensity.

RTE (3) can be written as an integral equation (Sato 1995; Sato et al. 2012, eqs 790, 7.91):

f (kc, x, t, q) = G(kc, x, t, q) + V0

∫ ∞

−∞
dt ′

∫∫∫ ∞

−∞
dx′

∮
d�q ′ G(kc, x − x′, t − t ′, q)g(kc, ψ(q, q ′)) f (kc, x′, t ′, q ′), (5)

where the propagator

G(kc, x, t ; q) = δ�(q, x)e−g0(kc )V0t G0(x, t) (6)

is composed of a delta function for solid-angle δ�, an exponential scattering loss term, and a causal propagator of a ballistic wave intensity
with a constant velocity V0,

G0(x, t) = 1

4πr 2V0
δ

(
t − r

V0

)
H (t). (7)

3.1.2 Link between random media and a scattering medium

There is a mathematical link between the RTE for a scattering medium and the wave equation for random media. The RTE can be derived
from the Bethe–Salpeter equation based on the Bourret approximation for the ladder approximation (e.g. Rytov et al. 1989; Margerin 2005),
or from the smoothing approximation with multiscale analysis (e.g. Howe 1973, 1974; Sato et al. 2012). The key parameter of the RTE (3)
is the scattering coefficient g as a function of scattering angle ψ and wavenumber kc. When akc < 1, we can use the Born approximation to
derive the scattering coefficient g from the PSDF of random media (Chernov 1960; Aki & Chouet 1975; Sato et al. 2012). Even when akc > 1,
the Born approximation is still applicable if the phase shift across the inhomogeneity is small:

ε2a2k2
c � 1. (8)

The scattering coefficient is given by

g(κ, kc, ψ) = k4
c

π
P

(
κ, 2kc sin

ψ

2

)
= 8π 1/2
(κ + 3/2)ε2 a3k4

c


(κ)
(
1 + 4a2k2

c sin2 ψ

2

)κ+3/2
≈ 8π 1/2
(κ + 3/2)ε2 a3k4

c


(κ)
(
1 + a2k2

c ψ
2
)κ+3/2

for ψ � 1. (9)

It takes the maximum value into the forward direction ψ = 0, and rapidly decreases as ψ increases beyond the corner at (akc)−1. The forward
scattering g(κ , kc, ψ = 0) increases as akc increases. The total scattering coefficient is the average of g over solid angle:

g0(κ, kc) = 1

4π

∫ 2π

0
dϕ

∫ π

0
sin ψdψ g(κ, kc, ψ) = k2

c

2π

∫ 2kc

0
P(κ, m)mdm = 4π 1/2
(κ + 3/2)ε2 ak2

c


(κ)2(κ + 1/2)

[
1 − 1

(1 + 4a2k2
c )κ+1/2

]
, (10)

which increases with kc increasing. Inserting (9) and (10) into the RTE (3), we calculate f (κ, kc, x, t, q) and then G R(κ, kc, x, t), where
argument κ is added. Those are functions of r ≡ |x| since the source radiation is isotropic.

We note that the RTE describes ray bending processes only; however, the RTE does not consider the wandering effect caused by travel
time fluctuations, which is naturally derived along with the Markov approximation (Sato et al. 2012, eq. 9.75). The characteristic time width
of the wandering effect at distance r is

tW (κ, kc, r ) =
√

2A(κ,0)r

V0
, (11)

where A is the longitudinal integral of ACF as a function of transverse distance r⊥ ≡ |x⊥|:

A(κ, r⊥) ≡
∫ ∞

−∞
R(κ, x⊥, z)dz = 2−κ+3/2√πε2a


(κ)

(r⊥
a

)κ+1/2
Kκ+1/2

(r⊥
a

)
,

A(κ, r⊥ = 0) = 2π 1/2
(κ + 1/2)


(κ)
ε2a. (12)
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Figure 2. (a) Plot of the wandering term w versus time scaled by tW, and wL versus time scaled by tWL, respectively. (b) Plot of the envelope broadening term
with peak delay bL versus time scaled by tML.

It leads to tW ∝ ε(ar)1/2/V0. The wandering effect is a Gaussian form in time,

w(κ, kc, r, t) = 1√
π tW (κ, kc, r )

e
− t2

tW (κ,kc ,r )2 . (13)

We note
∫ ∞

−∞ w(t)dt = 1. Fig. 2(a) shows a plot of w versus time scaled by tW.
The objective propagator is given by the convolution of the propagator GR with the wandering effect w in the time domain:

Gw,R(κ, kc, r, t) = w(κ, r, t) ⊗ G R(κ, kc, r, t). (14)

By using the convolution of Gw, R and the source function s(kc, t), we have the intensity time trace,

Iw,R(κ, kc, ζ, r, t) = Gw,R(κ, kc, r, t) ⊗ s(kc, t). (15)

The wandering term is a pure statistical effect which is necessary for the interpretation of the ensemble averaged intensity. Przybilla & Korn
(2008) precisely studied the necessity of the above convolution.

3.2 Spectrum division method: joint use of the RTE with the Born approximation and the Markov approximation

When akc � 1, we often face the situation where ε2a2k2
c � O(1). In that case, the Born approximation is inapplicable. Here, we newly

propose the spectrum division method as follows.

3.2.1 Decomposition of the random medium spectrum: the first step

According to Paper I, taking wavenumber ζkc as a reference, where ζ is a tuning parameter, we decompose the random medium spectrum into
low- and high-wavenumber spectral (long- and short-scale) components: P(m) = PL (m) + PS(m) (see Paper I, eqs 5a–6b). We first define
the short-scale component PS(m) as von Kármán-type with the same κ as

PS (κ, kc, ζ, m) ≡ 8π 3/2
(κ + 3/2)ε2
S aS

3


(κ) (1 + aS
2m2)κ+3/2

= 8π 3/2
(κ + 3/2)ε2 a3


(κ) ((ζakc)2 + a2m2)κ+3/2
. (16a)

Its RMS fractional fluctuation and corner are

εS(ε, a, κ, ζ, kc) = ε

(ζakc)κ
and aS(ζ, kc) = 1

ζkc
, (16b)

where (akc)−1 < ζ ≤ 1. PS increases and approaches P as ζ decreases. The corresponding ACF is

RS(κ, kc, ζ, r ) ≡ ε2
S 21−κ


(κ)

(
r

aS

)κ

Kκ

(
r

aS

)
= ε2 21−κ


(κ)(ζakc)2κ
(ζkcr )κ Kκ (ζkcr ) . (16c)

Then, we calculate the PSDF and ACF of the long-scale component using PL = P − PS and RL = R − RS, which are not von Kármán-type.
We note that PL has little high-wavenumber spectra, but PS still has spectra at low wavenumbers.

3.2.2 Born approximation for the short-scale component: the second step

We can use the Born approximation for the short-scale component PS if ζ is chosen to satisfy the condition of the small phase shift:

ε2
Sa2

Sk2
c ≡ ε2

ζ 2(ζakc)2κ
� 1. (17)
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Figure 3. (a) Decomposition of P (green) into PS (blue) and PL (red) for fc = 3 Hz. Semi-log plot (b) and log–log plot (d) of scattering coefficient versus
scattering angle ψ : g (green) and gS (blue) and gL (red). (c) Broadening factor bL (red) and wandering factor wL (black) at 150 km. Solid and dashed lines are
for ζ = 1.0 and ζ = 0.125, respectively.

For the von Kármán-type random media of (ε = 0.05, κ = 0.5, a = 5 km), at fc = 3 Hz, kc = 4.71 km−1 (arrow) is in the power-law range
of P (green) as shown in Fig. 3(a) since akc = 23.6 � 1. The direct use of the Born approximation is inapplicable since ε2a2k2

c = 1.39. As
examples, we show two cases of the spectrum decomposition: ε2

Sa2
Sk2

c = 0.00011 for ζ = 1.0 and ε2
Sa2

Sk2
c = 0.054 for ζ = 0.125. Both satisfy

condition (17). Blue and red curves show PS and PL, respectively. Solid and dashed curves are for ζ=1.0 and 0.125, respectively. PS(m) ≈
P(m) and PL(m) � P(m) in the power-law range; however, PS(m) � P(m) at low wavenumbers.

Applying the Born approximation to PS, we calculate the scattering coefficient of the short-scale component in the same manner as (9):

gS(κ, kc, ζ, ψ) = k4
c

π
PS

(
κ, kc, ζ, 2kc sin

ψ

2

)

= 8π 1/2
(κ + 3/2)ε2 a3k4
c


(κ)
(
(ζakc)2 + 4a2k2

c sin2 ψ

2

)κ+3/2
≈ 8π 1/2
(κ + 3/2)ε2 a3k4

c


(κ)
(
(ζakc)2 + a2k2

c ψ
2
)κ+3/2

for ψ � 1. (18a)

We define the scattering coefficient of the long-scale component as

gL (κ, kc, ζ, ψ) = g(κ, kc, ψ) − gS(κ, kc, ζ, ψ). (18b)

In Figs 3(b) and (d), we show semi-log and log-log plots of g (green), gS (blue) and gL (red) versus scattering angle ψ . We note that g(ψ = 0)
is extremely large. Fig. 3(d) shows that g (green) has a corner at ψ = (akc)−1 ∼ 0.042; however, gS (blue) has a corner at ψ = ζ . We note
gL ≈ g and gS � g for small angles, but gS ≈ g at large ψ . In the forward direction gS for ζ = 0.125 (blue-dashed) is larger than gS for ζ =
1.0 (blue-solid), however, both take nearly the same value at a large ψ . We have shown g and gL only for comparison, and we do not use them
in the following synthesis.

The total scattering coefficient of the short-scale component is

gS0(κ, kc, ζ ) = 1

4π

∫ 2π

0
dϕ

∫ π

0
sin ψdψgS(κ, kc, ζ, ψ) = ε2

a

2π 1/2
(κ + 1/2)


(κ)

[
1 − 1

(1 + 4ζ−2)κ+1/2

]
(ζakc)1−2κ

ζ 2
, (18c)
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(see Paper I, eq. 39). By substituting gS for g and gS0 for g0 in (3), the RTE for the directional distribution of intensity fS for the short-scale
component is given by

∂t fS (κ, kc, ζ, x, t, q) + V0q∇ fS (κ, kc, ζ, x, t, q)

= −gS0(κ, kc, ζ )V0 fS (κ, kc, ζ, x, t, q) + V0

4π

∮
gS

(
κ, kc, ζ, ψ(q, q ′)

)
fS

(
κ, kc, ζ, x, t, q ′) d�q ′ + 1

4π
δ (x) δ (t) . (19)

The intensity propagator is given by

G R,S (κ, kc, ζ, x, t) ≡
∮

fS (κ, kc, ζ, x, t ; q) d�q , (20)

where
� ∞

−∞ dxG R,S(κ, kc, ζ, x, t) = 1.

3.2.3 Markov approximation for the long-scale component: the third step

When akc > 1, we may use the parabolic/paraaxial approximation. If ζ < 1, PL is smaller than P at kc (see Fig. 3(a)), which is more suitable
for the parabolic approximation. We may approximate the longitudinal integral of RL for a small r⊥ as

AL (κ, kc, ζ, r⊥) ≡
∫ ∞

−∞
RL (κ, kc, ζ, x⊥, z)dz

≈

⎧⎪⎨
⎪⎩

ε2a 2π1/2
(κ+ 1
2 )


(κ)

[(
1 − 1

(ζakc )2κ+1

)
−

(
1 − 1

(ζakc )2κ−1

)
1

2(2κ−1)

( r⊥
a

)2
]

for κ �= 1/2,

2ε2a
(

1 − 1
(ζakc)2

)
− (

ε2a ln (ζakc)
) ( r⊥

a

)2
for κ = 1/2,

(21)

where ζ > (akc)−1 (see Paper I, eqs 22c, 23c). Using the Markov approximation for a quasi-monochromatic wavelet with the centre
wavenumber kc through the long-scale component, we derive the intensity time trace for the spherical radiation from a point source (see Paper
I, section 3.2). The propagator for the long-scale component of random media is written as a convolution of the wandering term wL caused
by travel time fluctuations, the broadening term bL caused by ray bending processes due to multiple scattering around the forward direction,
and the causal propagator G0 with a geometrical spreading factor and a constant velocity V0 in the time domain (see Paper I, eqs 16, 33):

GL (κ, kc, ζ, r, t) = wL (κ, kc, ζ, r, t) ⊗ bL (κ, kc, ζ, r, t) ⊗ G0(r, t). (22)

The envelope broadening term is given by

bL (κ, kc, ζ, r, t) = π 2

16 tM L (κ, kc, ζ, r )
ϑ4

′′
(

0, e
− π2

4
t

tM L (κ,kc ,ζ,r )

)
H (t) , (23)

where symbol ϑ4
′′(v, q) ≡ ∂v

2ϑ4(v, q) means the second derivative of the elliptic theta function of the fourth kind with respect to the first
argument v, and tML is the characteristic time of broadening. The time trace of bL shows a curve having a delayed peak and a smoothly
decaying tail. Fig. 2(b) shows a plot of bL (red) versus time scaled by tML. The peak delay measured from the onset is about 0.37tML, and
the maximum peak value is about 1.48/tML. We note that

∫ ∞
0 bL (κ, ζ, kc, r, t) dt = 1. The characteristic time is derived from AL at a small

transverse distance r⊥ (see Paper I, eqs 26, 30b):

tM L (κ, kc, ζ, r ) = r

2V0

1

(aL⊥kc)2
= ε2

2V0a
r 2 ×

⎧⎨
⎩

π1/2
(κ+ 1
2 )

(2κ−1)
(κ)

(
1 − (ζakc)1−2κ

)
for κ �= 1

2 ,

ln ζakc for κ = 1
2 .

(24)

Peak delay and broadening given by bL depend on fc through tML, which shows what is called the stochastic dispersion (e.g. McLaughlin &
Anderson 1987).

The Markov approximation for the intensity is valid when aL⊥kc � 1, where the coherence radius aL⊥ at distance r is defined by
k2

c r (AL (κ, kc, ζ, 0) − AL (κ, kc, ζ, aL⊥)) = 1 (Rytov et al. 1989, p. 110, eq. 3.114, Paper I, eqs 28, 37). It is equivalent to

tM L (κ, kc, ζ, r ) � r

2V0
. (25)

This condition works as a constraint for the applicable travel distance range since tM L
r/V0

∝ ε2 r
a . Emoto et al. (2010) numerically examined this

condition for the case of a Gaussian ACF.
The wandering term is directly calculated from AL(κ , kc, ζ , r⊥ = 0) as the same as (13):

wL (κ, kc, ζ, r, t) = 1√
π tW L (κ, kc, ζ, r )

e
− t2

tW L (κ,kc ,ζ,r )2 , (26)

where
∫ ∞

−∞ wL (t)dt = 1. The characteristic time is

tW L (κ, kc, ζ, r ) =
√

2AL (κ, kc, ζ, 0)r

V0
= 2

V0

√
ε2a

π 1/2

(
κ + 1

2

)

(κ)

(
1 − (ζakc)−2κ−1)√r (27)
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Figure 4. Waveform at a distance of 25 km for a Ricker wavelet source of fc = 3 Hz in a homogeneous medium with V0 = 4 km s−1.

(Paper I, eqs 16, 24). Fig. 2(a) shows a plot of wL versus time scaled by tWL.
We show plots of bL (red) versus time and wL (black) versus time at a 150 km distance in Fig. 3(c). Difference between wL for ζ = 0.125

and that for ζ = 1.0 is small; however, bL for ζ = 1.0 is more broadened than that for ζ = 0.125. Figs 3(b) and (c) show how parameter ζ

controls the relative contribution of the long and short scale components. When ζ = 0.125, gS is non-isotropic and bL is narrow; however,
when ζ = 1.0, gS is nearly isotropic and bL is broadened.

We confirm GL → G0 as r → 0 since bL and wL approach a delta function as r → 0. The time integral is independent of radius r,∫ ∞
0 4πr 2V0 GL dt = 1; however, we note

∫ ∞
0 4πr 2GL dr �= 1, which slightly destroys the energy conservation.

Convolution (22) means a redistribution of the propagation velocity, more correctly, as a redistribution of the slowness along the ballistic
ray. Function wL works as a symmetric smoothing filter and bL works as an lag filter in the time domain.

3.2.4 Convolution of the RTE intensity and the wandering and broadening effects: the fourth step

We remember that GR, S represents the coherent (direct) wavelet intensity and the scattering contribution of PS, however, the used propagator
(7) has a constant velocity V0. Since most of seismic rays of GR, S just after the onset propagate in a narrow angle around the forward direction,
as an approximation, we propose to replace G0 with GR, S in (22) at a given travel distance in order to define the propagator reflecting both
scattering contribution of PS and PL :

GL ,S (κ, kc, ζ, r, t) = wL (κ, kc, ζ, r, t) ⊗ bL (κ, kc, ζ, r, t) ⊗ G R,S (κ, ζ, kc, r, t) . (28)

We expect this is a good approximation at least if characteristic times of the broadening term is very small compared with the travel time.
Convolution with the source function s(kc, t), we have the intensity time traces as

IL ,S(κ, kc, ζ, r, t) = GL ,S(κ, kc, ζ, r, t) ⊗ s(kc, t) = wL (κ, kc, ζ, r, t) ⊗ bL (κ, kc, ζ, r, t) ⊗ IR,S(κ, kc, ζ, r, t), (29a)

where

IR,S(κ, kc, ζ, r, t) = G R,S(κ, kc, ζ, r, t) ⊗ s(kc, t). (29b)

Convolution with the wandering effect is always necessary when the synthesized intensity trace is compared with the ensemble averaged
intensity, however, it is not necessary when synthesized intensity traces are compared with individual traces in one realization.

4 C O M PA R I S O N O F T H E I N T E N S I T Y T I M E T R A C E S B Y T H E S P E C T RU M D I V I S I O N
M E T H O D A N D T H O S E B Y F D S I M U L AT I O N S

4.1 Source function

We conduct FD waveform simulations in von Kármán-type random media with ε = 0.05 and a = 5 km and V0 = 4 km for a Ricker wavelet
source proportional to (1 − 2π 2 f 2

c t2)e−π2 f 2
c t2

with a time offset of 0.42 s from the origin time and fc = 3 Hz. When the wave time trace at
distance r1 from the source in a homogeneous medium with the velocity V0 is given by u(kc, r1, t) (see Fig. 4), we calculate the intensity using
the Hilbert transform:

I (kc, r1, t) ≡ 1

2

{
u(kc, r1, t)2 + H [u(kc, r1, t)]2

}
. (30)

Correcting the geometrical spreading and the travel time, we have the source function at the origin:

s(kc, t) = 4πr 2
1 V0 × I

(
kc, r1, t − r1

V0

)
. (31)

We will use s(kc, t) in the spectrum division method.
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Figure 5. Semi-log plots of IR, S (fine) and IL, S (bold) for ζ = 0.125 (red) and ζ = 1.0 (blue) versus lapse time.

4.2 Synthesis of intensity time traces by the spectrum division method

For a given ζ value, substituting gS into the RTE (19), we solve it using Monte Carlo (MC) simulations (e.g. Gusev & Abubakirov 1987;
Hoshiba 1991; Yoshimoto 2000; Przybilla & Korn 2008; Sens-Schönfelder et al. 2009). Particles are randomly shot into various directions,
where each particle carries a unit intensity. Particle trajectories are recorded with a time step of �t = 0.01 s until 70 s, where the time step is
chosen to satisfy gS0V0�t � 1. We count the number of particles at a given lapse time t in a spherical shell of radius r and thickness �r = 1 km
irrespective of their propagation directions. Dividing the number of particles by the shell volume 4πr2�r and the total number of shots 107,
we have the response of the scattering medium for a unit source radiation GR, S (20). We evaluate the intensity IR, S (29b) by the convolution
of GR, S with the source function s(kc, t) (31). Then, we evaluate the intensity IL, S (29a) by the convolution of IR, S with the wandering effect
wL and the broadening effect bL.

On the left panel of Fig. 5, we show semi-log plots of time traces IR, S (fine) for two ζ values. Receiver distances from the source are
from 25 to 200 km with a 25 km separation. The time traces resulting from the Monte Carlo simulations are jagged; however, both bL and wL

work as smoothing filters. IR, S for ζ = 1 (fine blue) has a sharp peak at the onset and a smoothly decaying tail at each travel distance since
gS is small and close to isotropic. Coda of IR, S for ζ = 0.125 (fine red) is larger than that for ζ = 1. IR, S for ζ = 0.125 has a sharp peak at
the onset near the source, however, it shows broadening with distance increasing especially for κ = 0.1 and 0.5. On the right panel of Fig. 5,
we show IL, S resulting from the convolution of wL and bL with IR, S. Difference between IL, S for ζ = 1 (thick blue) and that for ζ = 0.125
(thick red) becomes very small especially around the peak arrival, which is prominent for κ = 0.5 and 1.0; however, there is some difference
between them for κ = 0.1. There are some difference in coda for ζ = 1 and that for ζ = 0.125 especially for κ = 1.0. If we focus on the time
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Figure 6. Semi-log plot of intensity versus lapse time for a 3 Hz Ricker wavelet source. Comparison of synthesized intensity trace ILS (black) with averaged
FD simulation intensity trace (pink).

trace around the peak, we may say IL, S is rather insensitive to the choice of ζ except κ = 0.1. For IL, S of ζ = 0.125, the scattering contribution
of the short-scale component is large and that of the long-scale component is small; however, it is opposite for the case of ζ = 1.0.

In Fig. 6, we show semi-log plot of IL, S for given κ and ζ values by fine black lines, where ζ = 2−n for n = 0 ∼ 3. As shown in the
inset, ε2

Sa2
Sk2

c value increases as ζ decreases. All ζ values satisfy the condition (17); however, it is not satisfied if we put ζ = 2−4. Envelope
broadening with travel distance increasing is seen in every case. For a given ζ , coda excitation increases as κ decreases, which reflects the
difference in PSDF’s. When the spectral roll-off is small as for κ = 0.1 and 0.5, coda intensity traces at different distances converge to a
common decay curve as lapse time increases, which means the uniform distribution of the coda intensity in space. Late coda of IL, S traces are
jagged, and the coda intensity for the case of κ = 1.0 and ζ=0.125 drops at close receivers because the total number of shots in the Monte
Carlo simulation is still not large enough.

4.3 Synthesis of intensity time traces by FD simulations

4.3.1 Realization of random media and FD simulations

We conduct FD simulations of the propagation of a 3 Hz Ricker wavelet through random media having the same PSDF. Each random medium
is a rectangular parallelepiped with dimensions of 202 km long to the z direction and 133 km wide in the x and y directions (see Fig. 7). The
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Figure 7. Random medium model space of a rectangular parallelepiped for the FD simulation. Source and receivers are shown by a blue star and green spheres,
respectively.

grid spacing is 0.04 km, that is, there are 33 grids per wavelength. Total numbers of grids are 3328, 3328 and 5040 for x, y and z-directions,
respectively. Precisions of the FD scheme are 4th and 2nd order in space and time, respectively. We adopt the absorbing condition for all
boundaries (Cerjan et al. 1985). We show the locations of the source and receivers in Fig. 7. Receiver distances from the source are from 25
to 150 km with a 25 km separation. We set nine receivers at each propagation distance, where one receiver is located on the z-axis and eight
receivers are located around it. The distance between the central and a surrounding receiver is 10 km, which is larger than a. The computation
is conducted on the Earth Simulator managed by JAMSTEC and is parallelized by using the MPI library along the z-direction (Furumura &
Chen 2004). The time interval is 3 ms and the total number of the time step is 16 666, that is, 50 s. Although all the boundaries are absorbing
ones, there are waves having a small amplitude reflected from the boundaries. We analyse coda waves of very small amplitudes, so that such
small reflected waves might affect the coda amplitude. Therefore, we do not use FD simulation waves after the expected arrival time of each
reflected wave at each receiver.

For the realization of a random medium, we use the Fourier transform of the square root of the PSDF with random phases; however, it
is difficult to synthesize a random medium of such a large size at once. We first synthesize 96 small random media of 10243 grids, and then
join them to construct a random medium of a large size. Practically, we conduct the FD simulation for 6 different random media realized by
using different random seeds for each κ value. That is, there are 6 realizations × 9 receivers = 54 wave traces at each propagation distances.
We calculate the averaged FD intensity trace by averaging over the 54 intensity traces. The dimension of a realized random medium and
the number of random medium realizations are restricted by the CPU power and the capacity of the computer. Precise description and the
statistical characteristics of FD simulation wavelets are given in Emoto & Sato (in preparation).

In Fig. 6, we plot averaged intensity time traces by FD simulations by pink line at each travel distance. Envelope broadening with travel
distance increasing is seen for every κ value. Long lasting coda waves appear especially for small κ values.

4.3.2 Convergence to the averaged FD intensity trace

We investigate how many FD intensity traces are necessary to obtain a stable averaged FD intensity trace. For a given travel distance, we
randomly sort the order of 54 intensity traces and average them one by one. We estimate the number of intensity traces of which the averaged
intensity reaches within ±10 per cent of the final averaged intensity. We conduct the same procedure for 100 different random sort orders,
then we average the required numbers at every 0.5 s. Fig. 8 shows the temporal change of the average number of intensity traces. A large
number of traces is necessary for κ = 1.0 compared with the case of κ = 0.1. Around the peak arrival time, about 40 intensity traces are
required. Conversely, about 15 intensity traces are sufficient for the coda. It suggests the self-averaging property of coda that the intensity in
one typical realization through a large medium provides the ensemble average intensity.

4.4 Comparison of intensity time traces

4.4.1 Comparison of IL, S and averaged FD intensity time trace

In Fig. 6, we compare the intensity time trace IL, S by the spectrum division method (black) and the averaged FD intensity time trace (pink)
for a 3 Hz Ricker wavelet at each travel distance for given κ and different ζ values. We may say the case of ζ = 0.125 shows the best fit from
the onset through the peak until coda at each travel distance for every κ value. As ζ increases from 0.25 to 1.0, difference in peak delays
increases for κ = 0.1 and 0.5, and the difference in coda intensities increases for all κ values.
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Figure 8. Temporal change of the number of FD intensity traces of which the averaged FD intensity reaches within ±10 per cent of the final averaged FD
intensity.

Here we a priori suppose ε2
Sa2

Sk2
c = 0.1 as a typical condition satisfying (17), where ζ varies from 0.082 to 0.14. In Fig. 9, solid lines

show IL, S for this condition. These plots also show good coincidence between IL, S and averaged FD intensity traces from the onset through
the peak until coda. However, we have not compared the convergence of coda intensity traces to a common decay curve since the lapse time
range of the FD simulation is not long enough.

From those comparisons, we may say that the smallest value of ζ satisfying the condition (17) is the best choice, which makes the
scattering contribution of the short-scale component large and that of the long-scale component small.

4.4.2 Comparison of ILa and averaged FD intensity time trace

Paper I proposed a synthesis for the intensity trace around the peak arrival by the Markov approximation for the long-scale component with
the scattering attenuation due to the short-scale component as the lowest correction [Paper I, eq. 41b]:

ILa(κ, kc, ζ, r, t) = GL (κ, ζ, kc, r, t)e−gS0(κ,kc,ζ )V0t ⊗ s(kc, t)

= wL (κ, kc, ζ, r, t) ⊗ bL (κ, kc, ζ, r, t) ⊗ G0(r, t)e−gS0(κ,kc ,ζ )V0t ⊗ s(kc, t). (32)

We show a comparison of ILa for ζ = 0.5 (green) and 1.0 (blue) with the averaged FD intensity trace (pink) at each distance in Fig. 10. We
see good coincidence between ILa and averaged FD intensity traces especially near around the peak at each travel distance; however, there is
a large difference between their coda intensities since the positive contribution of wide-angle scattering is not considered. Comparisons for
the 2-D case are shown in Sato & Fehler (2016).

Downloaded from https://academic.oup.com/gji/article-abstract/211/1/512/4060690/Synthesis-of-a-scalar-wavelet-intensity
by National Research Institute for Earth Science and Disaster Resilience user
on 04 September 2017



524 H. Sato and K. Emoto

Figure 9. Comparison of the synthesized intensity trace ILS (black) for ε2
Sa2

Sk2
c = 0.1 with the averaged FD intensity trace (pink) for a 3 Hz Ricker wavelet

source at each travel distance.

Figure 10. Comparison of the ILa trace with the averaged FD intensity trace (pink) for a 3 Hz Ricker wavelet source at each travel distance.

4.4.3 Power-law decay of the maximum intensity versus travel distance

The maximum value of wL is ∝ r−0.5 since tWL ∝ r0.5 and that of bL is ∝ r−2 since tML ∝ r2. The maximum value of IR, S decreases according
to the geometrical spreading r−2 when gS0 is small. Therefore, we may expect the maximum value of IL, S ∝ r−2 at close distances and ∝ r−4

at large distances. As shown in Fig. 11, the maximum value of the averaged FD intensity (red) shows a power-law decay a little faster than
the geometrical decay r−2 (dotted line) at travel distance r < 100 km, and then it shows more rapid decay approaching to the geometrical
and broadening decay r−4 (dashed line) as r increases. Those characteristics are well explained by the maximum intensity decay of IL, S (blue
dots). There is a slight difference between them for κ = 1.0. Probably it may reflect the fact that the number of random medium realizations
for FD simulations is not large enough for this case.

5 D I S C U S S I O N S

We have newly proposed the spectrum division method that is useful for the situation where ε2a2k2
c � O(1). We have confirmed the validity of

this method by comparison with FD simulations for the situation where ε2a2k2
c ∼ O(1). It will be necessary to compare synthesized intensity

Figure 11. Log–log plot of the maximum intensity versus travel distance. As references, we plot power-law decay r−2 (dotted) and r−4 (broken).
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traces with FD simulations for various parameter sets and different centre frequencies, especially for situations where ε2a2k2
c � 1; however,

it needs a larger computer power.
When akc > 1 and ε2a2k2

c ∼ O(1), our syntheses predict that the decrease of the peak intensity varies from the −2nd power to the
−4th power of travel distance as travel distance increases. The resultant power-law decay of the maximum intensity may give a mathematical
support for the power-law decay of the maximum amplitude versus distance that has been often used in the magnitude determination of local
earthquakes (e.g. Tsuboi 1954). Sato & Fukushima (2013) showed the power-law decay of the maximum intensity versus distance through a
fractally random distribution of isotropic scatterers; however, we have shown that the power-law decay is also derived from the broadening
effect and the geometrical spreading even in uniform random media. It will be interesting to introduce background velocity increasing with
depth, which may lead to a little smaller decay with epicentral distance increasing along the ground surface compared with the present
synthesis because of the correction of geometrical spreading.

The number of realizations of small random media and the size of each small random medium for FD simulations are restricted by the
CPU power and the memory size in this study. Averaged FD intensity traces for κ = 0.1 and 0.5 is smooth enough; however, those for κ =
1.0 look more jagged than others, which means that it is better to use a larger number of random medium realizations to get smoother average
FD intensity traces. It is also better to put one receiver at each travel distance (e.g. Fehler et al. 2000; Sato & Fehler 2016).

We have used MC simulations to solve the RTE; however, Margerin et al. (2016) solved the RTE by using discrete Hankel and Fourier
transforms (e.g. Guizar-Sicairos & Gutiérrez-Vega 2004; Baddour 2010; Liemert & Kienle 2012; Baddour & Chouinard 2015). As shown by
(5), the RTE can be written as an integral equation. By using the spherical harmonics expansion of non-isotropic scattering coefficient, we can
rewrite the RTE as simultaneous equations. Recently Jing et al. (2014) presented an advanced numerical technique to solve the simultaneous
equations including higher order terms. Their methods will be alternatives to Monte Carlo simulations to solve the RTE.

Sato et al. (2004) proposed a method using the intensity trace according to the Markov approximation as a propagator and the transport
scattering coefficient as the effective isotropic scattering coefficient in the RTE. As a possible extension, there will be a method using GL as a
propagator and the non-isotropic scattering coefficient gS in the RTE. The other one is to make a stochastic formulation of the distorted wave
Born approximation for scattering by random media for the situation where ε2a2k2

c � O(1). If those are possible, we will be able to calculate
the intensity time trace simply using that in the RTE.

6 C O N C LU S I O N S

For the structure study of the randomly heterogeneous earth medium, it is important to know the propagation characteristics of a seismic
wavelet in high-frequencies. As a mathematical model, we have studied the propagation of a scalar wavelet for the spherical radiation from
a point source in 3-D von Kármán-type random media with small velocity fractional fluctuation, ε2 � 1. As the centre wavenumber kc of a
wavelet increases in the power-law spectral range kc � a−1, we face the situation where ε2a2k2

c � O(1), where the Born approximation fails
because of large phase shift. In such a case, we have newly proposed the spectrum division method for the intensity synthesis. Taking ζkc

as a reference, where ζ is a tuning parameter, we divide the random medium spectrum into the short- and long-scale components. Using the
RTE with the Born scattering coefficient for the short-scale component, we calculate intensity traces. In parallel, we calculate the broadening
and wandering effects applying the Markov approximation to the long-scale component. Finally, we calculate the intensity time trace at a
given distance by the convolution of the intensity calculated by the RTE with the broadening and wandering effects, and a source function in
the time domain. Resultant intensity time traces show both envelope broadening with travel distance increasing and excitation of long lasting
coda waves. When the spectral roll-off is small, coda intensity traces at different distances converge to a common decay curve as lapse time
increases, which means the uniform distribution of coda intensity in space. Synthesized intensity traces well explain those of FD simulations
from the onset through the peak to coda for the situation where ε2a2k2

c ∼ O(1). Those syntheses will be a theoretical basis for the study of
random velocity inhomogeneities in the earth medium from envelopes of high-frequency seismic waves of small earthquakes.

A C K N OW L E D G E M E N T S

Authors are grateful to Michael Korn and Ludovic Margerin for their careful review comments and suggestions. FD simulations were
conducted on the Earth Simulator at the Japan Agency for marine-Earth Science and Technology (JAMSTEC) under the support of a joint
research project between Earthquake Research Institute, the University of Tokyo and Center of Earth Information Science and Technology,
‘Numerical simulations of seismic- and tsunami-wave propagation in 3D heterogeneous earth’.

R E F E R E N C E S

Aki, K. & Chouet, B., 1975. Origin of coda waves: source, attenuation and
scattering effects, J. geophys. Res., 80, 3322–3342.

Andrews, L.C. & Phillips, R.L., 2005. Laser Beam Propagation through
Random Media, vol. 52, SPIE Press.

Baddour, N., 2010. Operational and convolution properties of three-
dimensional Fourier transforms in spherical polar coordinates, J. Opt.
Soc. Am. A, 27(10), 2144–2155.

Baddour, N. & Chouinard, U., 2015. Theory and operational rules for the
discrete Hankel transform, J. Opt. Soc. Am. A, 32(4), 611–622.

Calvet, M. & Margerin, L., 2013. Lapse-time dependence of coda Q:
anisotropic multiple-scattering models and application to the Pyrenees,
Bull. seism. Soc. Am., 103(3), 1993–2010.

Cerjan, C., Kosloff, D., Kosloff, R. & Reshef, M., 1985. A nonreflect-
ing boundary condition for discrete acoustic and elastic wave equations,
Geophysics, 50(4), 705–708.

Downloaded from https://academic.oup.com/gji/article-abstract/211/1/512/4060690/Synthesis-of-a-scalar-wavelet-intensity
by National Research Institute for Earth Science and Disaster Resilience user
on 04 September 2017



526 H. Sato and K. Emoto

Chernov, L.A., 1960. Wave Propagation in a Random Medium (Engl. trans.
by R. A. Silverman), McGraw-Hill.

Emoto, K., Sato, H. & Nishimura, T., 2010. Synthesis of vector-wave en-
velopes on the free surface of a random medium for the vertical incidence
of a plane wavelet based on the Markov approximation, J. geophys. Res.,
115, B08306, doi:10.1029/2009JB006955.

Emoto, K., Sato, H. & Nishimura, T., 2012. Synthesis and applicable con-
dition of vector wave envelopes in layered random elastic media with
anisotropic autocorrelation function based on the Markov approximation,
Geophys. J. Int., 188, 325–333.

Fehler, M., Sato, H. & Huang, L.-J., 2000. Envelope broadening of out-
going waves in 2D random media: a comparison between the Markov
approximation and numerical simulations, Bull. seism. Soc. Am., 90,
914–928.

Furumura, T. & Chen, L., 2004. Large scale parallel simulation and visual-
ization of 3D seismic wavefield using the earth simulator, Comput. Model.
Eng. Sci., 6, 153–168.

Guizar-Sicairos, M. & Gutiérrez-Vega, J.C., 2004. Computation of quasi-
discrete Hankel transforms of integer order for propagating optical wave
fields, J. Opt. Soc. Am. A, 21(1), 53–58.

Gusev, A. & Abubakirov, I., 1996. Simulated envelopes of non-isotropically
scattered body waves as compared to observed ones: another manifesta-
tion of fractal heterogeneity, Geophys. J., 1001(127), 9–60.

Gusev, A. & Abubakirov, I., 1999. Vertical profile of effective turbidity
reconstructed from broadening of incoherent body-wave pulses-II. Ap-
plication to Kamchatka data, Geophys. J. Int., 136(2), 309–323.

Gusev, A.A. & Abubakirov, I.R., 1987. Monte-Carlo simulation of record
envelope of a near earthquake, Phys. Earth planet. Inter., 49, 30–36.

Haney, M.M., Van Wijk, K. & Snieder, R., 2005. Radiative transfer in layered
media and its connection to the O’doherty-Anstey formula, Geophysics,
70(1), T1–T11.

Holliger, K., 1996. Upper-crustal seismic velocity heterogeneity as derived
from a variety ofP-wave sonic logs, Geophys. J. Int., 125(3), 813–829.

Hoshiba, M., 1991. Simulation of multiple-scattered coda wave excitation
based on the energy conservation law, Phys. Earth planet. Inter., 67,
123–136.

Hoshiba, M., 1995. Estimation of nonisotropic scattering in western Japan
using coda wave envelopes: application of a multiple nonisotropic scat-
tering model, J. geophys. Res., 100, 645–657.

Hoshiba, M., Sato, H. & Fehler, M., 1991. Numerical basis of the separation
of scattering and intrinsic absorption from full seismogram envelope - A
Monte-Carlo simulation of multiple isotropic scattering, Pap. Meteorol.
Geophys., 42, 65–91.

Howe, M.S., 1973. Conservation of energy in random media, with appli-
cation to the theory of sound absorption by an inhomogeneous flexible
plate, Proc. R. Soc. A, 331, 479–496.

Howe, M.S., 1974. A kinetic equation for wave propagation in random
media, Q. J. Mech. Appl. Math., 27, 237–253.

Ishimaru, A., 1997. Wave Propagation and Scattering in Random Media,
IEEE Press.

Jing, Y., Zeng, Y. & Lin, G., 2014. High-frequency seismogram envelope
inversion using a multiple nonisotropic scattering model: Application to
aftershocks of the 2008 wells earthquake, Bull. seism. Soc. Am., 104(2),
823–839.

Kopnichev, Y.F., 1975. A model of generation of the tail of the seismogram,
Dokl. Akad. Nauk SSSR (Engl. trans.), 222, 333–335.

Korn, M. & Sato, H., 2005. Synthesis of plane vector wave envelopes in
two-dimensional random elastic media based on the Markov approxima-
tion and comparison with finite-difference simulations, Geophys. J. Int.,
161(3), 839–848.

Landau, L. & Lifshitz, E., 2003. Quantum Mechanics, 3rd edn (Engl. trans.
by Sykes, J. B. & Bell, J. S.), Butterworth-Heinemann.

Lee, L.C. & Jokipii, J.R., 1975a. Strong scintillations in astrophysics. I. The
Markov approximation, its validity and application to angular broadening,
Astrophys. J., 196, 695–707.

Lee, L.C. & Jokipii, J.R., 1975b. Strong scintillations in astrophysics.
II. A theory of temporal broadening of pulses, Astrophys. J., 201,
532–543.

Liemert, A. & Kienle, A., 2012. Infinite space green’s function of the time-
dependent radiative transfer equation, Biomed. Opt. Express, 3(3), 543–
551.

Mancinelli, N., Shearer, P. & Liu, Q., 2016. Constraints on the heterogeneity
spectrum of Earth’s upper mantle, J. geophys. Res., 121, 3703–3721.

Margerin, L., 2005. Introduction to radiative transfer of seismic waves,
in Seismic Earth: Array Analysis of Broadband Seismograms, vol. 157,
pp. 229–252, eds Levander, A. & Nolet, G., Geophysical Monograph-
Ameerican Geophysical Union.

Margerin, L., Planès, T., Mayor, J. & Calvet, M., 2016. Sensitivity kernels
for coda-wave interferometry and scattering tomography: theory and nu-
merical evaluation in two-dimensional anisotropically scattering media,
Geophys. J. Int., 204(1), 650–666.

McLaughlin, K.L. & Anderson, L.M., 1987. Stochastic dispersion of short-
period P-waves due to scattering and multipathing, Geophys. J. R. astr.
Soc., 89, 933–963.

Obara, K. & Sato, H., 1995. Regional differences of random inhomogeneities
around the volcanic front in the Kanto-Tokai area, Japan, revealed from
the broadening of S wave seismogram envelopes, J. geophys. Res., 100,
2103–2121.

Petukhin, A. & Gusev, A., 2003. The duration-distance relationship and
average envelope shapes of small Kamchatka earthquakes, Pure appl.
Geophys., 160(9), 1717–1743.

Przybilla, J. & Korn, M., 2008. Monte Carlo simulation of radiative energy
transfer in continuous elastic random media-three-component envelopes
and numerical validation, Geophys. J. Int., 173(2), 566–576.

Rautian, T.G. & Khalturin, V.I., 1978. The use of the coda for determi-
nation of the earthquake source spectrum, Bull. seism. Soc. Am., 68,
923–948.

Rytov, S.M., Kravstov, Y.A. & Tatarskii, V.I., 1989. Principles of Statis-
tical Radiophysics (Vol. 4) Wave Propagation Through Random Media,
Springer-Verlag.

Saito, T., Sato, H. & Ohtake, M., 2002. Envelope broadening of spherically
outgoing waves in three-dimensional random media having power-law
spectra, J. geophys. Res., 107(B5), ESE 3-1–ESE 3-15.

Saito, T., Sato, H., Ohtake, M. & Obara, K., 2005. Unified explanation of
envelope broadening and maximum-amplitude decay of high-frequency
seismograms based on the envelope simulation using the Markov approx-
imation: Forearc side of the volcanic front in northeastern Honshu, Japan,
J. geophys. Res., 110, B01304, doi:10.1029/2004JB003225.

Sato, H., 1977. Energy propagation including scattering effects: Single
isotropic scattering approximation, J. Phys. Earth, 25, 27–41.

Sato, H., 1984. Attenuation and envelope formation of three-component
seismograms of small local earthquakes in randomly inhomogeneous
lithosphere, J. geophys. Res., 89, 1221–1241.

Sato, H., 1989. Broadening of seismogram envelopes in the randomly inho-
mogeneous lithosphere based on the parabolic approximation: Southeast-
ern Honshu, Japan, J. geophys. Res., 94, 17 735–17 747.

Sato, H., 1995. Formulation of the multiple non-isotropic scattering process
in 3-D space on the basis of energy transport theory, Geophys. J. Int., 121,
523–531.

Sato, H., 2008. Synthesis of vector-wave envelopes in 3-D random media
characterized by a nonisotropic Gaussian ACF based on the Markov ap-
proximation, J. geophys. Res., 113, B08304, doi:10.1029/2007JB005524.

Sato, H., 2016. Envelope broadening and scattering attenuation of a scalar
wavelet in random media having power-law spectra, Geophys. J. Int.,
204(1), 386–398.

Sato, H. & Fehler, M.C., 2016. Synthesis of wavelet envelope in 2-D ran-
dom media having power-law spectra: comparison with FD simulations,
Geophys. J. Int., 207(1), 333–342.

Sato, H. & Fukushima, R., 2013. Radiative transfer theory for the fractal
structure and power-law decay characteristics of short-period seismo-
grams, Geophys. J. Int., 195, 1831–1842.

Sato, H., Fehler, M. & Saito, T., 2004. Hybrid synthesis of scalar wave en-
velopes in two-dimensional random media having rich short-wavelength
spectra, J. geophys. Res., 109, B06303, doi:10.1029/2003JB002673.

Sato, H., Fehler, M. & Maeda, T., 2012. Seismic Wave Propagation and
Scattering in the Heterogeneous Earth, 2nd edn, Springer Verlag.

Downloaded from https://academic.oup.com/gji/article-abstract/211/1/512/4060690/Synthesis-of-a-scalar-wavelet-intensity
by National Research Institute for Earth Science and Disaster Resilience user
on 04 September 2017



Scalar wavelet intensity in random media 527

Sawazaki, K., Sato, H. & Nishimura, T., 2011. Envelope synthesis of short-
period seismograms in 3-D random media for a point shear dislocation
source based on the forward scattering approximation: application to
small strike-slip earthquakes in southwestern Japan, J. geophys. Res.,
116, B08305, doi:10.1029/2010JB008182.

Sens-Schönfelder, C., Margerin, L. & Campillo, M., 2009. Laterally het-
erogeneous scattering explains Lg blockage in the Pyrenees, J. geophys.
Res., 114, B07309, doi:10.1029/2008JB006107.

Shearer, P.M. & Earle, P.S., 2004. The global short-period wavefield mod-
elled with a Monte Carlo seismic phonon method, Geophys. J. Int., 158,
1103–1117.

Shiomi, K., Sato, H. & Ohtake, M., 1997. Broad-band power-law spectra of
well-log data in Japan, Geophys. J. Int., 130, 57–64.

Shishov, V.I., 1974. Effect of refraction on scintillation characteristics and
average pulse shape of pulsars, Sov. Astron., 17, 598–602.

Sreenivasiah, I., Ishimaru, A. & Hong, S.T., 1976. Two-frequency mutual co-
herence function and pulse propagation in a random medium: an analytic
solution to the plane wave case, Radio Sci., 11, 775–778.

Takahashi, T., Sato, H. & Nishimura, T., 2007. Strong inhomogeneity be-
neath Quaternary volcanoes revealed from the peak delay analysis of
S-wave seismograms of microearthquakes in northeastern, Japan, Geo-
phys. J. Int., 168, 90–99.

Takahashi, T., Sato, H., Nishimura, T. & Obara, K., 2009. Tomographic in-
version of the peak delay times to reveal random velocity fluctuations in

the lithosphere: method and application to northeastern Japan, Geophys.
J. Int., 178(47), 1437–1455.

Tripathi, J., Sato, H. & Yamamoto, M., 2010. Envelope broadening charac-
teristics of crustal earthquakes in northeastern Honshu, Japan, Geophys.
J. Int., 182(2), 988–1000.

Tsuboi, C., 1954. Determination of the Gutenberg-Richter’s magnitude of
earthquakes occurring in and near Japan, Zisin (in Japanese), 7, 185–193.

Wegler, U., Korn, M. & Przybilla, J., 2006. Modeling full seismogram en-
velopes using radiative transfer theory with born scattering coefficients,
Pure appl. Geophys., 163(2–3), 503–531.

Williamson, I.P., 1972. Pulse broadening due to multiple scattering in the
interstellar medium, Mon. Not. R. Astron. Soc., 157, 55–71.

Wu, R.S., Xu, Z. & Li, X.P., 1994. Heterogeneity spectrum and scale-
anisotropy in the upper crust revealed by the German Continental Deep-
Drilling (KTB) holes, Geophys. Res. Lett., 21, 911–914.

Yoshimoto, K., 2000. Monte-Carlo simulation of seismogram envelope in
scattering media, J. geophys. Res., 105, 6153–6161.

Yoshimoto, K., Sato, H. & Ohtake, M., 1997. Three-component seismogram
envelope synthesis in randomly inhomogeneous semi-infinite media based
on the single scattering approximation, Phys. Earth planet. Inter., 104,
37–61.

Zeng, Y., Su, F. & Aki, K., 1991. Scattering wave energy propagation in
a random isotropic scattering medium 1. Theory, J. geophys. Res., 96,
607–619.

Downloaded from https://academic.oup.com/gji/article-abstract/211/1/512/4060690/Synthesis-of-a-scalar-wavelet-intensity
by National Research Institute for Earth Science and Disaster Resilience user
on 04 September 2017


