
Performance Evaluation of Large-scale Parallel
Simulation Codes and Designing New Language Features
on the HPF (High Performance Fortran) Data-Parallel
Programming Environment

Project Representative

Yasuo Okabe Kyoto University

Author

Hitoshi Murai NEC Corporation

145

Chapter 3 Computer Science

High Performance Fortran (HPF) is provided for parallelizing your programs on the Earth Simulator (ES). Our goal in this

project is to parallelize large-scale real applications and study more efficient use of HPF. The achievements of this year are:

(1) a global atmospheric simulation code and the SPEC OMP benchmarks are parallelized and evaluated on the ES; (2) a pre-

processor that provides the functionality of pipelined parallelization is developed; and (3) the HPF/ES compiler is improved

and enhanced in some points.

Keywords: High Performance Fortran, HPF, atmospheric simulation, benchmark

1. Introduction
We believe that a parallelizing means not only easier to

use than but also as efficient as MPI is essential for future

parallel supercomputing, and that High Performance Fortran

(HPF) can play the role.

An HPF compiler HPF/ES is provided on the Earth

Simulator (ES). We plan to parallelize large-scale real appli-

cations from various fields, such as atmosphere, ocean, plas-

ma, FEM and aerodynamics, with HPF to evaluate them on

the ES and investigate the results in detail to learn more effi-

cient use of HPF. We will also study the programming meth-

ods of hierarchical parallelization with HPF, because it is

important to take advantage of all of the inter-node paral-

lelization, intra-node parallelization and vector processing to

fully exploit the performance of the ES. Improvements or

new features required to make HPF more useful will be

detected and proposed.

The achievements of this year include evaluation of a

global atmospheric simulation code, parallelization of the

SPEC OMP benchmarks, development of a preprocessor that

adds the functionality of pipelined parallelization to HPF

compilers, and improvements of the HPF/ES compiler.

2. Evaluation
2.1. Real-world application

We parallelized with HPF/ES a global atmospheric simu-

lation code based on the Global Atmospheric Model (GAM)

originally developed by the Australian Bureau of

Meteorology.

This program simulates mainly a global kinetic process

of atmosphere. It is a Fortran program of about 35,000

lines, which includes 280 lines of HPF directives and 40

lines of EXTRINSIC prefixes, where main arrays are dis-

tributed by cyclic. Although we now parallelize the pro-

gram in the flat manner, we plan to adopt the hybrid manner

for higher performance.

The resolution of the simulation is T239L29 (480 grids

along the longitude axis and 240 along the latitude).

0

5

10

15

20

25

30

35

40

45

50

E
la

p
se

d
 T

im
e

(s
ec

)

21 4

Number of Processors

Fig. 1 Evaluation Result of the Global Atmospheric Model (Elapsed

Time for executing three steps of the kernel loop)

146

Annual Report of the Earth Simulator Center April 2004 - March 2005

The preliminary evaluation of the kernel loop, which is

free of I/O, shows that it achieves a 3.5 times speedup in the

4-APs execution on the ES (Fig. 1). This speedup degrada-

tion is mainly due to the overhead of re-distributing cyclic-

distributed large arrays in forward and inverse Legendre

transformations and forward and inverse Fourier transforma-

tions performed in each time step. These transformations

dominate the whole execution time.

2.2. Benchmark

We plan to parallelize the programs from SPEC OMP[1]

with HPF/ES. The goal of this study is to:

compare the usability and effectiveness of HPF with

those of OpenMP;

store knowledge of HPF programming; and

develop the "SPEC HPF" benchmark.

The development of the programs is now completed but

the evaluation on the ES has not been done yet. See [5] for

the evaluation results on other platforms.

This study tells us that for regular or structured problems,

it is easy to achieve high performance with HPF/ES if the

programmer specifies good data distribution of arrays to

reduce communication. On the other hand, it is difficult to

investigate the cause for poor performance of a program.

However, if once the cause is investigated, it is relatively

easy to remove it.

3. Study of New Language Features
3.1. Implementation

The pipelined parallelization is one of the functionality that

the HPF specification does not support. Although some of the

existing HPF compilers support it [2], HPF/ES has not yet.

We developed a preprocessor named HPFX which trans-

lates an HPF source program annotated by the HPFX's

PIPELINE directive into a normal HPF one, and ran the

generated program on the ES to evaluate the performance of

pipelined parallelization in HPF programs.

The syntax and semantics of the PIPELINE directive is as

follows:

A simple example of the PIPELINE directive is shown

below.

E101 pipeline-directive is !HPFX PIPELINE(pipeline-array-list)

E102 pipeline-array is array-name(pipeline-region-list) (pipeline-spec-list)

E103 pipeline-region is int-expr

or [int-expr]:[int-expr]

E104 pipeline-spec is int-expr

Constraint: A PIPELINE directive must be followed by an INDEPENDENT directive

with ignoring comments.

Constraint: The dimension of the template with which a dimension of the array array-

name is aligned must be distributed by neither CYCLIC nor INDIRECT.

A PIPELINE directive is an assertion that there is a loop-carried dependence

described by pipeline-spec-list on the array array-name.

The preprocessor generates communications to parallelize the following loop in the

pipeline fashion. The region of the array described by pipeline-region-list is to be

communicated or, in other words, is the region accessed in the loop.

REAL A(100)

!HPF$ PROCESSORS P(4)

!HPF$ DISTRIBUTE A(BLOCK) ONTO P

!HPFX PIPELINE(A(:),(1))

!HPF$ INDEPENDENT

DO I=1, 99

!HPF$ ON HOME(A(I)), LOCAL

A(I) = A(I) + A(I-1)

END DO

call recv1_real(A, wdth, 1, lb, ub)

!HPF$ INDEPENDENT

DO I=2, 100

!HPF$ ON HOME(A(I)), LOCAL

A(I) = A(I) + A(I-1)

END DO

call send1_real(A, wdth, 1, lb, ub)

The PIPELINE directive asserts to the preprocessor that

there is a loop-carried dependence of distance one, which

means that one element on the distribution boundary is to be

sent to the neighbor processor, in the whole region of the

array A.

The preprocessor translates the above into the code below.

It can be seen that one call statement is inserted before the

loop and another after the loop. The called subroutines

recv1_real and send1_real are generated from a template

by the preprocessor. They are extrinsic subroutines of kind

HPF_LOCAL, each of which are embedded with the calls to

MPI subroutines and communicates with each other at runtime.

The runtime sequential behavior of each processor for the

example is as follows:

0. Processor P(1) go through the call to recv1_real while

the others wait here for arriving data from their neighbor.

1. P(1) performs the loop to process the array A.

2. P(1) sends A(25) to P(2).

3. P(2) receives A(25) from P(1) and exits from

recv1_real.

4. P(2) performs the loop to process the array A.

5. ...

Fig. 2 illustrates these steps.

3.2. Evaluation

We parallelized the LU benchmark (class C) in the

NPB[3] with the preprocessor in two manners: one is the

one-dimensional pipeline and another two-dimensional. We

ran both of them on the ES, and the results are illustrated in

Fig. 3. The results of some other implementations are also

illustrated for comparison. The vertical axis represents the

speedup relative to the single-CPU execution of the Fortran

147

Chapter 3 Computer Science

implementation (NPB3.1-serial).

Note that all of the HPF and MPI implementations derive

from the code of NPB3.1. We exploit flat parallelization for

all of the implementation.

HPF-p1 in the graph is the result of the one-dimensional

and HPF-p2 the two-dimensional. They have little difference

in performance and outperform the normal HPF implementa-

tion (illustrated by HPF), which exploits the hyperplane

method[4] to parallelize the DOACROSS loop. However the

MPI one gives still higher performance.

The MPI implementation exploits the two-dimensional

pipeline algorithm that is the same as our HPF-p2 implemen-

tation. Our investigation reveals that the reason MPI outper-

forms HPF-p2 is mainly the overhead of calling the map-

ping inquiry subroutines GLOBAL_ALIGNMENT and GLOB-

AL_DISTRIBUTION, which are included the HPF extrinsic

local library, and constructing the communication schedule.

Since HPFX is not a compiler module but a preprocessor,

it can refer to neither the information from compiler analysis

nor the runtime information. Accordingly, such overheads of

calling the mapping inquiry subroutines and constructing the

communication schedule are rather difficult to avoid in the

current preprocessor implementation.

The overheads should be removed if the compiler supports

the functionality of the preprocessor, and therefore it can be

said that the evaluation results show the effectiveness of the

pipeline parallelization.

4. Improvements and Enhancements of the HPF/ES
Compiler
We have requested the developer to improve and enhance

HPF/ES in some problems revealed by our study in FY2003

and FY2004. The recent update resolves some of the prob-

lems as follows:

(a) overlapped execution of the shadow area (EXT_HOME)

is available;

(b) partial REFLECT is available; and

(c) some communication patterns performs better.

– multidimensional shift communication

– array re-distribution

5. Conclusion
We parallelized a global atmospheric simulation code and

SPEC OMP code with HPF/ES, and evaluated them on the

ES. The results show the detail of the advantage and disad-

vantage of HPF. We developed a preprocessor for HPF/ES

that processes pipelined parallelization to verify the effec-

tiveness of such pipelined parallelization in HPF. It is shown

from the evaluation using the NPB LU benchmark that

pipelined parallelization is superior to the conventional

hyperplane methed in performance. However, it cannot per-

form as well as MPI because of its limited access to the

compiler's information. This performance degradation

should be improved if the compiler supports the functionali-

ty of the preprocessor.

There are following future works planned:

evaluation of real-world applications (contd.);

cross-platform evaluation of benchmarks; and

study of new language extensions and features.

Bibliographies
1) Standard Performance Evaluation Corporation, "SPEC

OMP," http://www.spec.org/omp/.

2) Nishitani, Y. et al., "Techniques for compiling and imple-

menting all NAS parallel benchmarks in HPF,"

Concurrency and Computation - Practice ¥& Experience,

Vol.14, No.8-9, Wiley, pp.769-787 (2002).

3) D.E. Bailey, et al., "The NAS Parallel Benchmarks,"

Technical Report RNR-94-007, NASA Ames Research

time
1

25

26

50

51

75

76

100

Array A

Shadow
Areas

Comm.

Comm.

Comm.

Fig. 2 Runtime behavior of Pipelined Execution

0
0 10 20 30 40 50 60

5

10

15

20

25

30

35

40

Number of Processors

S
p

ee
d

u
p

 (
si

n
g

le
 =

 1
)

MPI

HPF

HPF-p1

HPF-p2

Fig. 3 Scalability of the NPB LU benchmark

148

Annual Report of the Earth Simulator Center April 2004 - March 2005

Center, 1994.

4) H. Murai and Y. Okabe, "Implementation and Evaluation

of NAS Parallel Benchmarks with HPF on the Earth

Simulator," In proc. of SACSIS2004, Sapporo, Japan,

May 2004.

5) Morii, H. et al., Evaluation of Parallel Performance with

HPF, IPSJ SIG Notes 2004-HPC-99, pp.271-276, 2004.

149

Chapter 3 Computer Science

HPF High Performance Fortran

NEC

ES High Performance Fortran HPF

HPF HPF

3 : 1 SPEC OMP ES ;

2 ; 3 HPF/ES

High Performance Fortran HPF

