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Chapter 4  Epoch Making Simulation

Following the research and development up to previous years, we made further developments of the study of the complex

multi-phase systems with internal structures. This year we focused on 1) Large scale simulation of the collective behavior of

multiple red blood cells, 2) DNS/DEM coupling simulation for hindered settling behavior, 3) Development of a new scheme

of Discrete Element Method for solid/fluid multi-material simulations using four particles interaction.
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1. Introduction
Mixtures of particles and fluid or that of solids and fluid

can be seen in many occasions. However, they show signifi-

cantly complex behavior depending on the density of parti-

cle or solid part. This is because internal micro-structures

composed of particles or solids induce highly heterogeneous,

unisotropic and non-linear responses. As a result, mathemat-

ical description of those material behaviors becomes

extremely difficult.

Numerical simulations, rely on tracing the motion of

many particles, are likely to remain central to such studies.

In this report, we will focus on the following three topics

related to the problem of mixtures of particles and fluid: 1)

Collective behavior of multiple red blood cells, 2) Hindered

settling behavior, 3) A new scheme of Discrete Element

Method for solid/fluid multi-material simulations using four

particles interaction

2. Collective Behavior of Multiple RBCs
2.1. Flow model for multiple RBCs [1]

In the much larger vessels than RBC size, collective behav-

ior under the influence of mechanical interaction between

RBCs is increasingly important to determine rheological prop-

erties of blood as a mass. In this section, a simulation method

for multiple RBCs is proposed toward understanding of rheo-

logical properties of blood from a viewpoint of multi-scale

mechanics. Assuming macroscopic flow field is not affected

by each RBC motion, macroscopic flow field was prescribed

by theoretical/numerical analysis. The difference in the veloci-

ties between the RBC and the prescribed flow field determined

momentum and viscous forces acting on RBC. In addition,

reaction force is introduced in the case of contact of RBCs.

2.2. Simulation model and parallel computing technique

A two-dimensional blood flow model between parallel

plates was constructed using 10 × 20 = 1200 RBCs, as

shown in Fig. 1(a). Each RBC was modeled by 100 particles.

The size of the model was 200 µm in axial flow length and

75 µm in distance between the plates. The Poiseuille flow

was assumed as the prescribed flow field. The ES system
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(a) Simulation model

(b) Multiple RBCs flow obtained by simulation 

Fig. 1  Large-scale simulation of flow of multiple RBCs using parallel

computing technique
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[2], a vector/parallel super computer system, was used to

simulate the problem, in which we used 80 processors and

12 hours in real time (960 hours in CPU time). The parallel

computation with standard MPI library was employed, and

the simulation region was divided into 80 regions as the

same number of the processors. Preliminary numerical

experiments showed that the data communication time great-

ly affected computing time in the simulation. Therefore, the

communication was performed per 1000 calculation steps,

which did not change the essential result from that obtained

in the case of full communication.

2.3. Results

As for the simulation codes developed for 80 processors

on the ES system, vector operation ratio, average vector

length and parallel efficiency were 99.30%, 203.19 and

98.69%, respectively. These specs were acceptable to use

1024 processors in the ES system. The code enabled us to

calculate blood flow in 98.9 [s] in the simulation time, in

which RBCs were able to travel from the inlet to the outlet.

The simulation result demonstrated that RBCs flew down-

stream due to fluid force and concentrated to the flow axis, as

shown in Fig. 1(b). This axial concentration, corresponding

to experimental observation, would play an important role in

distributing the RBCs into the daughter vessels at bifurcation

[1]. In order to understand this kind of collective behavior in

RBCs flow, however, further studies are necessary to clarify

the characteristics the model parameters introduced into RBC

model [1,3], and to investigate effects of the assumption on

the prescribed flow field on the simulation results.

3. DNS/DEM coupling simulation for hindered settling
behavior
In order to propose a formula of hindered settling veloci-

ty, the effect of concentration and size distribution of parti-

cles on the settling velocity of a particle in suspension was

investigated by the experiment and computer simulation. 

In the experiment, the sedimentation behavior of particles

which distributed uniformly in a rectangle container was

observed using a high-speed camera at low particle concen-

tration, and the settling velocity of a particle in suspension

was obtained by analyzing the pictures. At high concentra-

tion, settling velocity of each particle cannot be observed

visually with the high-speed camera. Then, particles were

distributed uniformly in a cylindrical container and sedimen-

tation velocity of interface between particles layer and fluid

was observed. In the result, it was confirmed that as the par-

ticle concentration increased, the velocity of a particle

decreased, the variation of each particle velocity became

large, and the effect of the particle size distribution

increased. 

The simulation was carried out to obtain the detailed data

which cannot be obtained experimentally and is useful to

propose an equation of settling velocity. On such a purpose,

a direct numerical simulation (DNS) was used to calculate

the fluid flow of the surface of a particle closely so that the

effect of fluid flow on a particle behavior can be investigat-

ed, and a particle behavior was calculated by the discrete

element method (DEM). Furthermore, we tried to develop

the large-scale simulation in order to represent more realistic

simulation system because very many particles are needed to

reproduce the particles with particle size distribution. 

Figure 2 shows the relation of the sedimentation velocity

and concentration obtained by simulation and experiment at

high concentration. The vertical axis expresses a velocity

ratio, that is, expresses the hindered settling velocity to the

settling velocity of a single particle. The experimental data

was measured by an apparatus as shown in Figure 3 and so

there are no wall effect. Therefore, the experiment data

agrees with Steinour's well. The simulation result also corre-

sponds with Steinour's in a tendency. However, the value of

simulation is lower than Steinour's and Experimental result.

It seems that the precision of simulation depends on the ratio

of cell size of DNS to particle size. Used cell size is one-

Fig. 2  Effect of concentration on settling velocity of particle

Fig. 3  Experimental apparatus
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eighth of particle diameter for the simulation. However it is

not enough cell size. Figure 4 shows the settling velocity of

single particle at different cell size. The settling velocity is

close to the theoretical value of Stokes as cell size becomes

small. Therefore, it is suggested that the simulation result in

Figure 2 is insufficiency of precision and if cell size is small-

er the simulation value may be close to values of Steinour

and experiment. 

Next, the effect of Reynolds number on settling velocity

is shown in Figure 5. The effect of Reynolds number was

investigated by changing a fluid viscosity and fixing other

parameters. It turned out that the reduction rate of settling

velocity as particle concentration increases becomes small

when Reynolds number is higher, and it was remarkable at

high concentration. It is thought that if the Reynolds number

becomes high a fluid flow exfoliates from the particle sur-

face and so drag force decreases. As a result, settling veloci-

ty at high Reynolds number was higher than that at low

Reynolds number.

4. A new scheme of Discrete Element Method for solid/
fluid multi-material simulations using three-dimen-
sional four particle interaction

4.1. Introduction of QDEM

From the view point of the mechanics of materials, all tec-

tonic processes of the solid Earth involve movement of

solid, molten material, and fluid. Another point is the interi-

or of the Earth is not made of the same material nor has

homogeneous nature all the way through. Depending on the

depth from the surface, temperature, pressure, and chemical

environment to a large extent define the nature of materials

and various resultant aspects of deformation and flow. For

example, convection in the mantle, driven by the thermal

gradient between the core and lithosphere, occurs by solid-

state deformation and flow of the rocks and minerals.

Deformation in the shallow crust, on the other hand, is domi-

nated by brittle processes, predominantly sliding on pre-

existing plate boundary or fault systems. 

However, the scenario mentioned above is still a hypothe-

sis based on the indirect observations near the surface of the

Earth. The reality is that the dynamics of the interior of the

Earth is basically unobservable physics both in terms of time

and space. Under such uncertain circumstances, numerical

simulations play a key role to virtually observe the complex

behavior of the solid Earth system and to understand the

entire self-consistent dynamics of multi-materials phenome-

na as well as its long-term behavior. 

Realistic simulations of the tectonic processes including

mantle convection, plate subduction, and magma flow

require the consideration of a wide variety of complex rhe-

ologies. One of the difficulties within self-consistent multi-

materials/multi-phenomena models, capturing various rhe-

ologies, such as elasticity, plasticity, failure, friction, fluid

flow properties and their temperature and pressure dependen-

cy, is that the individual behavior cannot be considered in

isolation [4]. In other words, one set of field equations can

contain one kind of rheology, although it can be applied to

multi-components mixed materials. For very simple example,

if a material which behaves like solid at low temperature and

behaves like fluid at high temperature is subject to a large

temperature contrast, one must choose either of the models:

1) a fluid model with high viscosity contrast, 2) a solid model

with high creep effect. In either case, numerical instabilities

may be unavoidable due to the enormous material parameter

contrasts in addition to the complexity in the formulation if

one follows the traditional continuum mechanics approach.

Hence, it is worth developing a new specific computational

scheme to deal with multi-materials and multi-rheologies for

the numerical simulations of the solid Earth.

Motivated by the discussion above, a new method for

numerical simulations which inherits the advantages of parti-

cle-based methods, with which micro-continuum mechanics

is implemented to express the three dimensional multi-mate-

rials and multi-rheologies without solving complex field

equations. The new method proposed here, namely, QDEM

(Quadraple Discrete Element Method) is a kind of DEM but

Fig. 4  Effect of grid size of DNS on settling velocity of one particle Fig. 5  Effect of Reynolds number on settling velocity particle
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the interaction of particles is defined not by two particles but

by four particles. The four particles are not necessary to

touch each other but are located in neighbor each other to

form a tetrahedron by connecting the center of their mass

which contains no other mass center of a particle. Assuming

a micro-continuum for each tetrahedron where rheological

models in continuum mechanics can be considered, we for-

mulate the relationship between the motion of four particles

and the stress developed in the tetrahedron. Once stress-

force conversion for a tetrahedron is established, the rest of

procedures are equal to those of DEM.

4.2. Isotropic elastic solid

One of the general forms of an elastic solid for the solid

Earth simulation, including the fundamental physics, such as

pressure, temperature and other potential energy is described

by the functions

t(t) = func_t(F, θ, Gradθ, X),

q(t) = func_q(F, θ, Gradθ, X), (1)

ε(t) = func_ε(F, θ, Gradθ, X)

where t is the Cauchy stress tensor, t is the time, q is the heat

flux vector, ε is the internal energy, func_ represents a func-

tion, F is the deformation gradient tensor, θ is the temperature

and X is the position at the reference [5]. Here, for simplicity,

let us assume that the material properties are independent of

the temperature, which means there is no heat and energy

flow. Then, the material is called purely elastic. Further sim-

plification may be made by introducing the symmetry condi-

tions. As a result, equations (1) are simply reduced into 

t(t) = func_t(F). (2)

As you can seen in (2), the Cauchy stress tensor t only

depends on the deformation gradient tensor F. Actually this

is a broad definition of isotropic elastic solid - Elastic stress

is determined only from the information of reference config-

uration and current configuration. Inversely speaking, if we

can well define the deformation gradient tensor F in a parti-

cle system, we can give three dimensional isotropic elastic

properties in that system. This concept is important and it

was the first step to develop QDEM.

Since the deformation gradient tensor F maps vectors

from the reference configuration dX onto vectors in the cur-

rent configuration dx, 

dx = FdX (3)

and is therefore also known as a two-point-tensor. Thus, to

determine the nine components of the deformation gradient

tensor F, a set of mapping of minimum three linear inde-

pendent vectors in a body is required. If four points not

arranged in a same plane are given, then three linear inde-

pendent vectors in a space can be defined. Those four points

are the vertexes of a tetrahedron. Therefore, finding a tetra-

hedral local arrangement of four particles in neighbor and

tracing it from the reference configuration to the current con-

figuration, we can define the deformation gradient tensor for

those four particles explained in Figure 6.  

However, the deformation of the tetrahedron described by

F in Figure 6 contains both pure stretch and rigid rotation as

is interpreted by two polar decompositions of F, 

F = RU= VR. (4)

Then, we need to remove the effect of rigid rotation in F,

since the stress tensor of an isotropic elastic solid in (2) actu-

ally depends only on the left stretch tensor V or on the right

stretch tensor U in (4). Choosing the left Cauchy-Green

deformation tensor, one obtains 

B = FFT = VRRTV = V2 (5)

dx=FdX

(translation)

stretch

rotation

+

+

reference configuration (t=0) current configuration (t=t)
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dx dx

dx
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2

Fig. 6  The deformation gradient tensor F: Three linear independent vectors defined in a system of four neighboring

particles arranged in a tetrahedron and the mapping of vectors from the reference configuration dX onto vec-

tors in the current configuration dx



205

Chapter 4  Epoch Making Simulation

and (5) shows that the tensor B is not affected by rigid rota-

tion any more.

Now, (2) is rewritten as 

t(t) = func_t' (B). (6)

From the theory in material equations for isotropic bodies,

the representative form of the functional of the stress tensor

for isotropic elastic solid is thus given by an isotropic tensor

function of the tensor B (see the details of the derivation in

the literature, such as [5]) : it implies

t(t) = a0I + a1B + a2B
2 (7)

where a0, a1, and a2 are the scalar functions of the tensor

invariants of IB, IIB, and IIIB.

Choosing the proper scalar functions of a0, a1, and a2 to

match with the real material property, we here obtained the

formulation of the stress tensor for isotropic elastic solid in

QDEM The stress tensor in (7) defines the stress developed

among four neighboring particles due to their relative

motion that are described by B. 

4.3. Isotropic viscous fluid

For viscous fluid, the dependency of the deformation gra-

dient tensor F for elastic solid is replaced to a dependency

on the velocity gradient tensor L and the density ρ.

Likewise F, L consists of stretching part and rotating part.

From the point of objectivity, the stress tensor may depend

on the symmetric part of L, if we assume isotropic viscous

fluid. L can be uniquely decomposed into symmetric and

anti-symmetric parts, 

L = 1/2 (L + LT) + 1/2 (L-LT) = D + W. (8)

In the same manner of (7), the representative form of the

functional of the stress tensor for isotropic viscous fluid is

t(t) = b0I + c1D + c2D
2

b0 = - p + c0 (9)

where p is the pressure term, which is a function of the den-

sity ρ and c0, c1, and c2 are the scalar functions of the tensor

invariants of ID, IID, and IIID. If we wish to model Newtonian

fluid, then the quadratic term drops out from (9). However,

incompressibility is not explicitly introduced in QDEM, but

expressed by a higher bulk modulus value which is the

parameters of the pressure increment term versus volume

change since each particle moves independently.

In QDEM, the velocity gradient tensor L can be defined

also on the four neighboring particles arranged in a tetrahe-

dron. In this case, L maps the relative position vectors dx on

the relative velocity vectors dv

dv = Ldx (10)

Hence, we understand how the two different rheologies of

an elastic solid and a viscous fluid can be introduced in the

same particle system using the four particle relationship in

QDEM. It is, clearly, possible that those two rheologies can

be mixed.

4.4. From stress to force

Up to the previous arguments, the way how to relate the

motion of four particles in neighbor to the stress stored

among them for isotropic elastic solid and viscous fluid was

explained. However, the closed formulation for QDEM has

not been completed yet. Because (7) or (9) does not give

forces on particles but gives stress among four particles. It

is, therefore, in need to convert the stress tensor for a tetra-

hedron to the force vector acting on the particles.

In QDEM, the stress developed in the volume of each tetra-

hedron is homogeneously constant. Therefore, the way to sub-

divide this volume to define the interfacing planes is the key

issue to estimate the contributing force acting on the four par-

ticles. There are many ways to divide a tetrahedron into four

blocks. Considering the stress homogeneously distributed in

the tetrahedron, we have developed a new method which

uniquely divides an arbitrary tetrahedron into four equi-vol-

ume blocks. Although the details of the method are not

explained here, one tetrahedron can be subdivided into four

equi-volume blocks by twelve triangular surfaces. Figure 7

shows the interfacing surfaces of each domain of four blocks.

Once these surfaces are defined, the stress vector for each tri-

angular surface will be given from the stress tensor, and it will

then be converted into the force acting on the surface of each

block. Finally, all the surface forces on each block are

Fig. 7  Skelton of interfacing planes
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summed up and transposed into the force acting on the vertex

of the tetrahedron as a part of the force on a particle.

The motion of each particle is determined individually by

solving the motion of equation from the resultant force and

the body force. This procedure is exactly identical to the way

of DEM.

4.5. Discussion

Introducing a micro-continuum mechanics into the particle

based modeling, we showed a new computational scheme,

named QDEM, to implement three dimensional multi-materi-

als and muti-rheologies into particle based models. In this

sense, QDEM can be categorized as a DEM interpretation of

FEM-β [6]. Although the example rheologies considered in

this paper may be too simple for the simulation of the solid

Earth discussed in the section of introduction, the scheme is

far less complicated and solvable for practical purposes. One

of the main advantages of QDEM is to be easy to combine

with the ordinary DEM since the main framework is similar

except the part of the particle interaction.

In Figure 8, snapshots of uni-axial compression simula-

tion of viscous-elastic material with large strain (10%), as an

example of QDEM simulation, are shown.
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Fig. 8  Example simulation using QDEM
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