
137

Chapter 2 Computer Science

Development of General Purpose Numerical Software
Infrastructure for Large Scale Scientific Computing

Project Representative

Akira Nishida Institute of Science and Technology, Chuo University

Author

Akira Nishida Institute of Science and Technology, Chuo University

The Development of Software Infrastructure for Large Scale Scientific Simulation project, or the Scalable Software

Infrastructure (SSI) project for short, was initiated in November 2002, for the purpose of constructing a scalable software

infrastructure to expand large scale computing environments to replace existing implementations of parallel algorithms and

implementations in individual scientific fields. It contains iterative solvers for linear systems, fast integral transforms, their

effective implementations to incorporate high-performance computers of various types, and joint studies performed with insti-

tutes and computer vendors, in order to implement the developed libraries in advanced environments to become major plat-

forms in the next ten years. An object-oriented programming model was adopted to enable complex libraries to be built by

combining elementary mathematical operations. Implemented algorithms are selected from the viewpoint of scalability on

massively parallel computing environments. Some libraries adopted automatic performance tuning mechanisms to fit their

kernels on targeting architectures. We also proposed a parallel scripting language SILC as an interface to these libraries,

patents for the main concepts of which are in application. The libraries are distributed freely via the Internet, and intended be

improved by feedback from the users. Since the first announcement in September 2005, we have been updating the libraries to

reflect demands of users. Since 2006, we have started a joint project with the Earth Simulator Center, to enable our libraries to

run on massively parallel vector architectures, and released the results of our study as software.

Keywords: high performance computing, parallel algorithms, scalability, object-oriented programming, network distribution

1. Overview
To construct a software infrastructure for highly parallel

computing environments, we must precisely predict future

hardware technologies, and design scalable and portable

software for these technologies. Based on detailed research,

we installed various types of parallel computers to imple-

ment latest results in computing methods, maintaining scala-

bility and portability. The installed architectures include a

shared-memory parallel computer (SGI Altix 3700), a dis-

tributed-memory parallel computer (Cray XT3), a Linux-

based PC cluster, and a personal vector computer (NEC SX-

6i). Since 2003, we have signed contracts with the IBM T. J.

Watson Research Center on the joint study of library imple-

mentation on massively parallel environments with tens of

thousands of processors, using IBM Blue Gene/L. Since

2006, the SSI project has been selected for joint research

with the Earth Simulator Center to port our libraries on par-

allel vector computing environments. The results of the SSI

project will be evaluated on larger computers in the near

future.

Based on the above policies, we have to carefully design

the libraries so as to maintain portability and usability. In the

SSI project, we have studied the object-oriented implemen-

tation of libraries and the languages for such implementa-

tion. The results are displayed on the object-oriented inter-

face of the iterative solver library Lis and the autotuning

mechanism of the fast Fourier transform library FFTSS. The

libraries are written in C and are equipped with a Fortran

interface, and we can add interfaces for higher-level lan-

guages if necessary. In addition, we have developed SILC, a

simple interface for library collections, to be used in parallel

environments. Patents are in application for the specifica-

tions and the extension of SILC to a scripting language.

2. Iterative Solvers for Linear Sytems
The members of this group hosted many formal and infor-

mal meetings to promote basic research and published many

results on the conjugate gradient and conjugate-residual-

based iterative solvers, and their preconditioning for linear

equations and eigenvalue problems. In addition, this group

released Lis, a library of iterative solvers for linear systems,

including various solvers and preconditioners for many

sparse matrix storage formats. These solvers and precondi-

tioners are listed below.

138

Annual Report of the Earth Simulator Center April 2007 - March 2008

Table 1 Solvers.

Table 2 Preconditioners.

Table 3 Matrix storage formats.

CG CR

BiCG BiCR

CGS CRS

BiCGSTAB BiCRSTAB

BiCGSTAB(l) GPBiCR

GPBiCG BiCRSafe

Orthomin(m) FGMRES(m)

GMRES(m)

TFQMR

Jacobi

Gauss-Seidel

SOR

IDR(s)

1.0.x Added in 1.1.0

Jacobi Crout ILU

ILU(k) ILUT

SSOR Additive Schwarz

Hybrid User defined

 preconditioner

I+S

SA-AMG

SAINV

1.0.x Added in 1.1.0

Compressed Row Storage

Compressed Column Storage

Modified Compressed Sparse Row

Diagonal

Ellpack-Itpack generalized diagonal

Jagged Diagonal Storage

Dense

Coordinate

Block Sparse Row

Block Sparse Column

Variable Block Row

Point

Block

139

Chapter 2 Computer Science

We present an example of the program using Lis in Fig. 1

Feedback on Lis has been received from users, and Lis

has gone through many improvements. Lis can be used on

both small PC clusters and massively parallel computers,

such as the Earth Simulator, IBM Blue Gene, and Cray XT.

The code of Lis 1.1.2 has attained the vectorization ratio of

99.1% and the parallelization ratio of 99.99%. We show a

comparison with the MPI version of Lis and PETSc, a

library developed by Argonne National Laboratory, using

the three-dimensional Poisson equation (size: one million,

number of nonzero entries: 26,207,180) on an SGI Altix

with 32 processors in Fig. 2.

In fields such as fluid dynamics and structural analysis, we

must solve large-scale systems of linear equations to compute

numerical solutions of partial differential equations, and the

demand for efficient algorithms is great. In the SSI project,

we have designed and implemented scalable and robust algo-

rithms of iterative solvers for linear equations and their pre-

conditioning, derived from such physical applications.

In recent years, multilevel algorithms for large-scale lin-

ear equations, such as algebraic multigrid (AMG), have been

investigated in numerous studies. In most cases, multigrid

methods show linear scalability, and the number of iteration

counts is O(n) for a problem of size n. The algebraic multi-

grid method is based on a principle similar to the geometric

multigrid, which utilizes the spatial information on physical

problems, but this method differs from the geometric multi-

grid by considering the coefficient as a vertex-edge inci-

dence matrix, In addition, by using only the information on

the elements and their relations, this method generates coars-

er level matrices without higher frequency errors. The com-

plexity of AMG is equivalent to geometric multigrid and can

be applied to irregular or anisotropic problems. A conceptual

image of AMG is shown in Fig. 3.

We proposed an efficient parallel implementation of

AMG preconditioned conjugate gradient method based on

smoothed aggregation (SA-AMGCG) and found that the

proposed implementation provides better performance as the

problem size becomes larger.

Currently, AMG is the most effective algorithm for gener-

al-purpose preconditioning, and its scalability is also

remarkable. We have implemented AMG in Lis and have

tested AMG in massively parallel environments. We pre-

Fig. 2 Comparison of the MPI version of Lis and PETSc.

Fig. 3 Conceptual Image of the SA-AMG method.

Fig. 1 Example of the C program using Lis.

LIS_MATRIX A;

LIS_VECTOR b,x;

LIS_SOLVER solver;

int iter;

double times,itimes,ptimes;

lis_initialize(argc, argv);

lis_matrix_create(LIS_COMM_WORLD,&A);

lis_vector_create(LIS_COMM_WORLD,&b);

lis_vector_create(LIS_COMM_WORLD,&x);

lis_solver_create(&solver);

lis_input(A,b,x,argv[1]);

lis_vector_set_all(1.0,b);

lis_solver_set_optionC(solver);

lis_solve(A,b,x,solver);

lis_solver_get_iters(solver,&iter);

lis_solver_get_times(solver,×, &itimes,&ptimes);

printf("iter = %d time = %e (p=%e i=%e)\n",iter,times, ptimes, itimes);

lis_finalize();

140

Annual Report of the Earth Simulator Center April 2007 - March 2008

sented results for a two-dimensional Poisson equation of

dimension 49 million on 1,024 nodes of IBM Blue Gene/L

in Fig. 4.

We also proposed the BiCR method, described in Fig. 5,

which extends the CR method for symmetric problems to

nonsymmetric problems, and GPBiCR, its application to a

product type algorithm. In addition, we showed that a

smoother convergence was achieved, as compared with

BiCG. The convergence histories of some problems from

Matrix Market (WATT1, WATT2, and petroleum engineer-

ing) using BiCR are shown in Fig. 6. These algorithms are

also implemented on Lis 1.1.

In material science fields, such as solid-state physics and

quantum chemistry, large-scale simulations derived from

density functional theory and first-principles calculation are

often required. In these fields, there is a strong demand for

efficient algorithms to solve large-scale eigenproblems, and

cooperation with such fields is desirable in order to develop

scalable eigensolvers. There are several methods to compute

eigenvalues of large-scale sparse matrices, including the

Lanczos method for symmetric problems, the Arnoldi

method, its extension for nonsymmetric problems, the

Davidson method originally proposed for quantum chem-

istry, and the Jacobi-Davidson method, a derivative of the

Davidson method. We proposed a parallel implementation of

the Jacobi-Davidson method, which resulted in research on

performance and bottlenecks of iterative solvers and parallel

implementations of the Jacobi-Davidson method. Based on

observations, we proposed that the scalability of the conju-

gate gradient method for linear equations can improve the

performance of eigensolvers in parallel environments, where

the extreme eigenvalues of a generalized eigenproblem

Ax = λBx,

or an equivalent problem

Bx = µAx, µ = 1/λ

can be solved by reducing these problems to the calculation

of the local maximum or local minimum of the Rayleigh

quotients combined with appropriate preconditioners, such

as the algebraic multigrid. We are currently verifying the

effect of this procedure using Lis.

3. Fast Integral Transforms
In fields such as hydrodynamics and weather forecasting,

we need to solve problems on a spherical surface, which

derives the demands for high-performance fast integral

transforms. In the present study, we have developed high-

performance libraries, which have practical performance in

real computing environments, such as fast Fourier transform.

The fast Fourier transform is an implementation the dis-

crete Fourier transform and is used in many fields, ranging

from large-scale scientific computing to image processing.

Although many improvements have been proposed since the

discovery of the FFT algorithm, recent rapid progress in

processor architecture requires new FFT kernels.

Fig. 4 Comparison of AMGCG and ILUCG.

Fig. 5 Algorithm of the BiCR method.

Fig. 6 Comparison of BiCG and BiCR.

141

Chapter 2 Computer Science

The existing algorithms, which propose efficient use of

cache memory, adopt algorithms that do not require bit-

reverse, such as Stockham FFT. In the SSI project, we over-

lapped the bit-reverse process with memory access to enable

an in-place algorithm, and we have shown that the latency

can be eliminated.

Processors like Intel's IA-64 and IBM's POWER, which

have two multiply-add units and operate four floating point

calculations per cycle, are becoming the mainstream. The

multiply-add operation is a combination of multiply and add,

while a single multiply or a single add operation also uses

the multiply-add unit. This implies that we must combine as

many multiplies and adds as possible in order to utilize the

units efficiently. We proposed an 8-radix FFT kernel with

the least number of multiply-add operations, which requires

a smaller twiddle factor table and a smaller number of twid-

dle factors to be loaded. The result is reflected in the FFTSS

library, which we developed as an FFT library for super-

scalar processors with automatic performance tuning mecha-

nism, as shown in Fig. 7.

A program example and the performance of FFTSS for

one-dimensional FFT, as compared with commercial

libraries, and for OpenMP-based two-dimensional parallel

FFT supporting padding, as compared with FFTW, are

shown in Fig. 8 and 9–11, respectively.

In fields such as hydrodynamics and weather forecasting,

we must solve problems on spherical surfaces, which

requires high-performance fast integral transforms. In the

present research, we developed an MPI version of FFTSS

and implemented a vector processor version of FFT, over-

lapping a huge number of all-to-all communications and

computation, as part of a joint study with the Earth

Simulator Center. The FFTSS library showed the best per-

formance of 16.3 TFLOPS with the double-precision FFT on

512 nodes of the Earth Simulator, which is 49.6% of peak.

Fig. 7 Automatic performance tuning mechanism of FFTSS.

Fig. 8 Program example of FFTSS.

Fig. 9 Performance comparison of 1-dimensional FFT kernels on IBM

POWER5.

Fig.10 Performance comparison of 1-dimensional FFT kernels on Intel Itanium2.

max_threads = omp_get_num_procs();

fftss_plan_with_nthreads(max_threads);

plan = fftss_plan_dft_2d(nx, ny, py, vin, vout,

FFTSS_FORWARD, FFTSS_MEASURE);

{ /* Initialization of array */ }

for (nthreads = 1; nthreads <= max_threads; nthreads ++) {

fftss_plan_with_nthreads(nthreads);

t = fftss_get_wtime();

fftss_execute(plan);

t = fftss_get_wtime() - t;

printf("%lf sec. with %d threads.\n", nthreads, t);

}

142

Annual Report of the Earth Simulator Center April 2007 - March 2008

4. Programming Environment
Libraries for matrix computation are indispensable to sci-

entific computations, and several libraries have been pro-

posed for their implementation. These libraries are provided

with APIs to be used with other programs. For example, to

solve a linear equation Ax = b, the user prepares a matrix A

and a vector b in the format specified by the library and calls

a function with specified arguments. In such cases, the pro-

gram created by the user depends on the data structure and

function calls of the specific library. In many cases, there are

no compatibilities between the interfaces of the libraries, and

the user must modify the program to use the routines provid-

ed by other libraries. These libraries are also applicable to

cases with different preconditions or different computing

precisions. There are also libraries for specific computing

environments, which require libraries to be changed and

codes to be rewritten. It is burdensome for the user to rewrite

programs, and a more flexible method of using libraries is

needed. To fulfill the demand, we have proposed an environ-

ment-independent matrix computation library SILC, a sim-

ple interface for library collections.

Apart from the former usage based on the specific inter-

face of a library, SILC utilizes the features of the matrix

computation libraries by sending three types of requests: (1)

deposit of data to be input, (2) requests for computation by

means of mathematical expressions in the form of text, and

(3) fetch data to be output. The input data, such as matrices

and vectors, are transferred to an independent memory space

from the user program. The requests of computation by

means of mathematical expressions are interpreted as appro-

priate function calls and are executed in the independent

memory space. Finally, the results are returned to the memo-

ry space of the user program by request, as shown in Fig.12.

As an example, we present a C program in Fig.13, which

calls a routine of LAPACK to solve a linear equation via the

interface of SILC.

After making matrix A and vector b in LAPACK's format,

this program calls the solver routine of LAPACK via the

three routines SILC_PUT, SILC_EXEC, and SILC_GET

provided by SILC.

For scientific computing, libraries based on OpenMP and

MPI are used in various parallel computing environments.

SILC buffers the difference of computing environments

between the user program and computing environments and

enables us to use the libraries in a language- and environ-

ment-independent manner. We have assumed the following

four situations:

(A) sequential client and sequential server

(B) sequential client and shared-memory parallel server

(C) sequential client and distributed-memory parallel server

(D) distributed-memory parallel client and distributed-mem-

ory parallel server

The system configurations of SILC are shown in Fig.14.

Fig.12 Concept of SILC, a simple interface for library collections.

Fig.11 Performance of OpenMP-based two-dimensional parallel FFTSS

on SGI Altix 3700.

Fig.13 C program calling a routine of LAPACK to solve a linear equa-

tion via the interface of SILC.

silc_envelope_t A, b, x;

/* make matrix A and vector b */

SILC_PUT("A", &A);

SILC_PUT("b", &b);

SILC_EXEC("x = A \\ b"); /* solve the linear equation */

SILC_GET(&x, "x");

143

Chapter 2 Computer Science

Libraries are used by linking to the user program. The

user program transfers data and requests computations by

connecting to a single process or multiple processes. The

data transferred from the user program to the server is trans-

formed into the requested data distribution manner and is

retained in the server processes. The results returned to the

user program are transformed again to the requested data

distribution manner by the data redistribution mechanism.

Using remote distributed-memory parallel computing

environments via the implemented system, we have observed

better performance compared with the user program written

in the traditional manner. The results of the solution of the

initial value problem of a two-dimensional diffusion equation

are shown using the finite difference method shown in

Fig.15. Configuration is shown in Table. 4–5. We have used

the conjugate gradient method without a preconditioner of

Lis for the solution of linear equations, and have interpreted

the request to solve the system into the function call of MPI-

based Lis. Denoting the dimension by N and the number of

iterations by I, the amount of communication is O(N) and the

complexity is O(NI), which shows that we can solve the

problems faster on the remote parallel server than on the

local client when several iterations are required, even consid-

ering the communication cost.

To use control statements such as conditional branches

and loops in SILC, the user must prepare a function, which

includes the statements, and must make it callable from the

library program. This makes it impossible to program arbi-

trary combinations of mathematical expressions and control

statements. In the SSI project, we extended SILC to a script-

ing language with control statements, which interprets the

user program and separates the mathematical expressions

and the control statements and processes them using the

existing SILC framework. By this extension, we are able to

create more complicated programs, as shown in Fig.16.Fig.15 Performance of SILC on distributed-memory parallel computing

environments.

Fig.14 System confugrations of SILC.

Table 4 Configuration of computing environments.

 User Program SILC Server

traditional Xeon4 (1 PE) —

SILC (local) Xeon4 (1 PE) Xeon4 (4 PEs)

SILC (remote #1) Xeon4 (1 PE) Xeon8 (8 PEs)

SILC (remote #2) Xeon4 (1 PE) Altix (16 PEs)

Table 5 Specification of machine architectures.

Hosts Specification

 Xeon4 IBM eServer xSeries 335 (dual Intel Xeon 2.8 GHz, 1.0 GB RAM)

 Red Hat Linux 8.0, LAM/MPI 7.0

 Xeon8 Eight different nodes in the same PC cluster as Xeon4

 Atlix Intel ltanium2 1.3 GHz x32, 32 GB memory, Red Hat Linux Advanced

 Server 2.1, SGI MPI 4.4 (MPT 1.9.1)

144

Annual Report of the Earth Simulator Center April 2007 - March 2008

Fig.16 An example of extension to scripting language.

Conjugate Gradient Method

make tridiagonal matrix A and vector b

n = 400

A = diag(2.0 * ones(n, 1)) - diag(ones(n-1, 1), 1) - diag(ones(n-1, 1), -1)

b = A * (-ones(n, 1))

solve linear equation Ax=b using the conjugate gradient method

rho_old = 1.0

p = zeros(n, 1)

x = zeros(n, 1)

r = b

bnrm2 = 1.0 / norm2(b)

iter = 1

while (iter <= n) {

rho = r' * r

beta = rho / rho_old

p = r + beta * p

q = A * p

alpha = rho / (p' * q)

r = r - alpha * q

nrm2 = norm2(r) * bnrm2

x = x + alpha * p

if (nrm2 <= 1.0e-12) {

break

}

rho_old = rho

iter += 1

}

save solution x

save "sol.mtx", x

print number of iterations

message "number of iterations:"

pprint iter

145

Chapter 2 Computer Science

14

17 9

18

