Chapter 2 Epoch-Making Simulation

Development of General Purpose Numerical Software
Infrastructure for Large Scale Scientific Computing

Project Representative

Akira Nishida

Author
Akira Nishida

Research Institute for Information Technology, Kyushu University

Research Institute for Information Technology, Kyushu University

The Scalable Software Infrastructure Project was initiated as a national project in Japan for the purpose of constructing a scalable

parallel software infrastructure for scientific computing. The project covered three areas: iterative solvers for linear systems, fast

integral transforms, and their portable implementation.

Modular programming was adopted to enable users to write their codes by combining elementary mathematical operations.

Implemented algorithms were selected from the viewpoint of scalability on massively parallel computing environments. Since the

first release in September 2005, the codes have been used by thousands of research projects around the world.

Keywords: high performance computing, parallel algorithms, modular programming

1. Overview

Construction of a software infrastructure for highly parallel
computing environments requires precisely prediction of future
hardware technologies, and design of scalable and portable
software for these technologies.

The Scalable Software Infrastructure for Scientific
Computing (SSI). Project was initiated in November 2002,
as a national project in Japan, for the purpose of constructing
a scalable software infrastructure [1], [2], [3]. Based on the
policies, we have used various types of parallel computers, and
carefully designed our libraries on them, to maintain portability
and usability. The architectures included shared-memory parallel
computers, distributed-memory parallel computers, and vector
supercomputers. Since 2006, the SSI project has been selected
for a joint research with the Earth Simulator Center to port our
libraries on massively parallel vector computing environments.
Since 2003, we have signed a contract with the IBM Watson
Research Center on the joint study of library implementation
on massively parallel environments with tens of thousands of
processors. The results of the SSI project will be evaluated on
larger computers in the near future.

In the SSI project, we have studied object-oriented
implementation of libraries, autotuning mechanisms, and
languages for the implemented libraries. The results were
applied to a modular iterative solver library Lis and a fast
Fourier transform library FFTSS. The libraries were written in C
and equipped with Fortran interfaces. We have also developed a
simple interface for library collections SILC, with an extension

to scripting language.

119

2. Lis: a Library of Iterative Solvers for Linear

Sytems

In the fields such as fluid dynamics and structural analysis,
we must solve large-scale systems of linear equations
with sparse matrices to compute high resolution numerical
solutions of partial differential equations. We have developed
Lis, a library of iterative solvers and preconditioners with
various sparse matrix storage formats. Supported solvers,
preconditioners, and matrix storage formats are listed in Table.
1-4. We present an example of the program using Lis in Fig. 1.

There are a variety of portable software packages that are
applicable to the iterative solver of sparse linear systems.
SPARSKIT is a toolkit for sparse matrix computations written
in Fortran. PETSc is a C library for the numerical solution of
partial differential equations and related problems, which is to
be used in application programs written in C, C++, and Fortran.
PETSc includes parallel implementations of iterative solvers
and preconditioners based on MPI. Aztec is another library of
parallel iterative solvers and preconditioners written in C. The
library is fully parallelized using MPI. From the viewpoint of
functionality, our library and all three of the libraries mentioned
above support different sets of matrix storage formats, iterative
solvers, and preconditioners. In addition, our library is
parallelized using OpenMP with the first-touch policy and takes
the multicore architecture into consideration. Many feedbacks
from the users have been applied to Lis, and Lis has been tested
on various platforms from small personal computers with Linux,
Macintosh, and Windows operating systems to massively
parallel computers, such as NEC SX, IBM Blue Gene, and Cray
XT series. Major tested platforms and target options are listed

in Table. 5-6. The code of Lis has attained the vectorization

Annual Report of the Earth Simulator Center April 2010 - March 2011

Table 1 Solvers for linear equations.

1.0.x

CG CR

BiCG BiCR

CGS CRS
BiCGSTAB BiCRSTAB
BiCGSTAB(]) GPBiCR
GPBiCG) BiCRSafe
Orthomin(m) AddedinI.1.x FGMRES(m)
GMRES(m) IDR(s)
TFQMR MINRES
Jacobi

Gauss-Seidel

SOR

Table 2 Solvers for eigenproblems.

Power Iteration

Inverse Iteration

Approximate Inverse Iteration
Added in 1.2.0 Conjugate Gradient

Lanczos Iteration

Subspace Iteration

Conjugate Residual

Table 3 Preconditioners.

1.0.x

Jacobi Crout ILU

ILU(k) ILUT

SSOR Additive Schwarz

Hybrid Added in 1.1.0 | User defined preconditioner
I+S

SA-AMG

SAINV

Table 4 Matrix storage formats.

Compressed Row Storage

Compressed Column Storage

Modified Compressed Sparse Row

Diagonal

Point -
Ellpack-Itpack generalized diagonal

Jagged Diagonal Storage

Dense

Coordinate

Block Sparse Row

Block Block Sparse Column
Variable Block Row

120

Chapter 2 Epoch-Making Simulation

Table 5 Major tested platforms.

C compilers (0N}

Intel C/C++ Compiler 7.0, 8.0, 9.1, 10.1, 11.1, | Linux

Intel C++ Composer XE Windows

IBM XL C/C++V7.0,9.0 A.IX
Linux

Sun WorkShop 6, Sun ONE Studio 7, Solaris

Sun Studio 11, 12 !

PGI C++ 6.0, 7.1, 10.5 Linux
Linux

gce 3.3,4.3 Mac OS X
Windows

Microsoft Visual C++ 2008, 2010 Windows

Fortran compilers (optional) (0N}

Intel Fortran Compiler 8.1, 9.1, 10.1, 11.1, Linux

Intel Fortran Composer XE Windows

IBM XL Fortran V9.1, 11.1 A.IX
Linux

Sun WorkShop 6, Sun ONE Studio 7, Solaris

Sun Studio 11, 12

PGI Fortran 6.0, 7.1, 10.5 Linux

g773.3 Linux

gfortran 4.3, 4.4 Mac OS X

295 0.91 Windows

Table 6 Major target options.

<target>

Configure scripts

cray xt3

Jconfigure CC=cc FC=ftn CFLAGS="-03 -B -fastsse -tp k8-64"
FCFLAGS="-03 -fastsse -tp k8-64 -Mpreprocess" FCLDFLAGS="-Mnomain"
ac_cv_sizeof void p=8 cross_compiling=yes --enable-mpi

ax_f77_ mangling="lower case, no underscore, extra underscore"

fujitsu_pq

Jconfigure CC=fcc FC=frt ac_cv_sizeof void p=8

CFLAGS="-03 -Kfast,ocl,preex" FFLAGS="-03 -Kfast,ocl,preex -Cpp"
FCFLAGS="-03 -Kfast,ocl,preex -Cpp -Am"

ax_f77_mangling="lower case, underscore, no extra underscore"

hitachi

Jconfigure CC=cc FC=f90 FCLDFLAGS="-1{90s" ac_cv_sizeof void p=8
CFLAGS="-Os -noparallel" FCFLAGS="-Oss -noparallel"
ax_f77 mangling="lower case, underscore, no extra underscore"

ibm_bgl

J/configure CC=blrts xlc FC=blrts_x1f90

CFLAGS="-03 -qarch=440d -qtune=440 -gstrict
-1/bgl/BlueLight/ppcfloor/bglsys/include"

FFFLAGS="-03 -qarch=440d -qtune=440 -qsuffix=cpp=F -qfixed=72 -w
-I/bgl/BlueLight/ppcfloor/bglsys/include"”

FCFLAGS="-03 -qarch=440d -qtune=440 -qsuffix=cpp=F90 -w
-1/bgl/BlueLight/ppcfloor/bglsys/include"

ac_cv_sizeof void p=4 cross_compiling=yes --enable-mpi
ax_f77_mangling="lower case, no underscore, no extra underscore"

nec_es

J/configure CC=esmpic++ FC=esmpif90 AR=esar RANLIB=true
ac_cv_sizeof void p=8 ax_vector machine=yes cross_compiling=yes
--enable-mpi --enable-omp

ax_f77 mangling="lower case, no underscore, extra underscore"

nec_sx9 cross

J/configure CC=sxmpic++ FC=sxmpif90 AR=sxar RANLIB=true
ac_cv_sizeof void p=8 ax_vector machine=yes cross_compiling=yes
ax_f77 mangling="lower case, no underscore, extra underscore"

5

121

Annual Report of the Earth Simulator Center April 2010 - March 2011

LIS_MATRIX A;

LIS_VECTOR b,x;

LIS_SOLVER solver;

int iter;

double times,itimes,ptimes;

lis_initialize(arge, argv);
lis_matrix_create(LIS_ COMM_WORLD,&A);
lis_vector_create(LIS_ COMM_WORLD,&b);
lis_vector_create(LIS_COMM_WORLD, &x);
lis_solver_create(&solver);
lis_input(A,b,x,argv[1]);
lis_vector_set_all(1.0,b);
lis_solver_set_optionC(solver);
lis_solve(A,b,x,solver);
lis_solver_get_iters(solver, &iter);

lis_solver_get_times(solver,×, &itimes,&ptimes);
printf("iter = %d time = %e (p=%e i=%e)¥n",iter,times, ptimes, itimes);

lis_finalize();

Fig. 1 Example of the C program using Lis.

ratio of 99.1% and the parallelization ratio of 99.99%. We show
a comparison of the MPI version of Lis and PETSc in Fig. 2,
for solving a three-dimensional Poisson equationon an SGI
Altix 3700 with 32 processors, processors, which suggests the
practicality of our library.

In recent years, multilevel algorithms for large-scale linear
equations, such as the algebraic multigrid (AMG), have been
investigated by many researchers. In most cases, multigrid
methods show linear scalability, and the number of iteration
counts is O(n) for a problem of size n. The algebraic multigrid
method is based on a principle similar to the geometric
multigrid, which utilizes the spatial information on physical
problems, but this method differs from the geometric multigrid
by considering the coefficient as a vertex-edge incidence
matrix. In addition, by using the information on the elements
and their relations, this method generates coarser level matrices
without higher frequency errors. The complexity of the
algebraic multigrid is equivalent to the geometric multigrid
and can be applied to irregular or anisotropic problems. We
proposed an efficient parallel implementation of the algebraic
multigrid preconditioned conjugate gradient method based on
the smoothed aggregation (SA-AMGCG) and found that the

O Lis

10000
m FETSC |

9000
8000
7000
6000
5000
4000
3000
2000
1000

Performance (Mflops)

-

16 32

#PE

Fig. 2 Comparison of the MPI version of Lis and PETSc. Matrix size is
1,000,000 and number of nonzero entries is 26,207,180.

122

proposed implementation provides the best performance as
the problem size becomes larger [38]. Currently, the algebraic
multigrid is the most effective algorithm for the general-purpose
preconditioning, and its scalability is also remarkable. We have
implemented the algebraic multigrid in Lis and have tested the
algebraic multigrid in massively parallel environments. We
presented weak scaling results for a twodimensional Poisson
equation of dimension 49 million on 1,024 nodes of a Blue
Gene system in Fig. 3.

The convergence of the Krylov subspace methods are much
influenced by the rouding errors. Higher precision operations
are effective for the improvement of convergence, however the
arithmetic operations are costly. We implemented the quadruple
precision operations using the double-double precision for both
the systems of linear equations and the eigenvalue problems,
and accelerated them by using Intel's SSE2 SIMD instructions.
To improve the performance, we also applied techniques such as
loop unrolling. The computation time of our implementation is
only 3.5 times as much as Lis' double precision, and five times
faster than Intel Fortan's REAL*16. Furthermore, we proposed
the DQ-SWITCH algorithm, which efficiently switches the

double precision iterations to the quadruple precision to reduce

—— AMGCG = ILUCG

40 p
S 30 /
] /
— 20
E /
2 10 *
&

0 1 1

0 2000 4000 6000

Problem Size (x10%)

Fig. 3 Comparison of AMGCG and ILUCG.

the computation time. The idea of the SIMD accelerated double-
double precision operations was incorporated into Japan's next
generation 10 petaflops supercomputer project by RIKEN.

In structural analysis and materials science such as solid-
state physics and quantum chemistry, efficient algorithms
for large-scale eigenproblems for large-scale simulations
are indispensable. There are several methods to compute
cigenvalues of large-scale sparse matrices. We implemented
major algorithms based on the Krylov subspace, from
the viewpoint of scalability in parallel environments. The
eigenproblems can be solved combined with appropriate
preconditioners, including the algebraic multigrid.

The performance of iterative solvers is affected by the
data structure of given matrices, the methodology of their
parallelization, and the hierarchy of computer architectures. We
have studied the validity of the performance optimization of
iterative solvers by benchmarking the MFLOPS performance
of matrix vector product kernels on the given computing
environment. Figure 4 shows the performance of a kernel
spmvtestl, derived from a discretized 1-dimensional Poisson
equation, for size from up to 1,280,000 on a single node of
SX-9 at JAMSTEC, and Fig. 5-7 show the performance for size
up to 40,960,000 on three scalar clusters with DDR Infiniband
interconnect at Kyushu University. While the scalar architecture
based machines show performance degradation after they reach

their peak performance with the data size of S00kB to 2MB per

m CRS
70,000
60,000 m CCS
o 50,000 @ MSR
& 40,000 = DA
—

T 30,000 mELL
= 20,000 bs
10,000 — =
0 ssg WBSR

1 2 4 8 CRs m BSC
#cores m COO

Fig. 4 Performance of spmvtest] for size from 40,000 to 1,280,000 on a
single node of the Earth Simulator 2.

600,000 " oRS
500,000 = CCs

9 400,000 @ MSR
S 300,000 m DA
< 200,000 mELL
100,000 = JDS
0256 m BSR

= BSC

m COO

Fig. 5 Performance of spmvtestl for size from 320,000 to 40,960,000
on the Fujitsu PRIMEGY RX200S3 Cluster at Kyushu
University.

123

Chapter 2 Epoch-Making Simulation

core, vector architecture shows gradual performance increase
until it reaches about 8-9GFLOPS per core (with the diagonal
(DIA) format in this case), and keep it as the data size grows. It
suggests that we should use as many cores with large caches as
possible when using a scalar architecture for such problems.

To date, we have counted more than three thousand projects
around the world. It is just the first step for us to achieve
more flexibility in scalable scientific computing, but we hope
our efforts reduce some barriers towards upcoming exascale

scientific computing environments in the near future.

References

[1] A. Nishida, "SSI: Overview of simulation software
infrastructure for large scale scientific applications (in
Japanese)", IPSJ, Tech. Rep. 2004-HPC-098, 2004.

A. Nishida, "Experience in Developing an Open Source
Scalable Software Infrastructure in Japan", Lecture Notes
in Computer Science, vol. 6017, pp. 87-98, 2010.

A. Nishida, R. Suda, H. Hasegawa, K. Nakajima, D.
Takahashi, H. Kotakemori, T. Kajiyama, A. Nukada, A.
Fujii, Y. Hourai, S. L. Zhang, K. Abe, S. Itoh, and T.
Sogabe, The Scalable Software Infrastructure for Scientific

Computing Project, Kyushu University, 2009, http://www.

ssisc.org/.
m CRS
400,000
m CCS
¢ 300,000 = MSR
S 200,000 m DA
L
= 100,000 mEL
o JDS
0
m BSR
#cores = BSC
m COO

Fig. 6 Performance of spmvtestl for size from 160,000 to 40,960,000
on the Fujitsu PRIMEQUEST Cluster at Kyushu University.

1200000 m CRS
1000000 = CCS

O 800000 B MSR
O 600000 = DIA
S 400000 mELL
200000 @ JDS

0 m BSR

m BSC

#cores m COO

Fig. 7 Performance of spmvtestl for size from 1,280,000 to 40,960,000
on the Hitachi SR16000 Cluster at Kyushu University.

Annual Report of the Earth Simulator Center April 2010 - March 2011

KBBRHEGT R HHEBAE Y 7 b = 7 A OB

Tay s VEEHE
V4 H Y JUINRE: TEHSLBIIZER S v & —

HH
P Y UK ORISR v Y —

RK7OT 7 MTlR ERENETNOHFICBCTHICHED 5N TEWH TV T ZLRERIIHT LA %E D
EZ RBBE PRSI N D 5B ORITHBEEIHO LAy =5 7V ARy 7 b o 7 B2 B+ o2 L 2 HWE LT,
BAESRD, mEB A, R OEORIRMN R EAOFERETEZ I, T 14 R X0 BBl IR R 1
BLEMIFEHEREFHEO—BRE L. SMHAFRRESREZHE LB 2T Tnb, EVa—MbEE3NA VI T —A
PRML. BMELRERELZHOIA TV R BHIHETELIINICTHE LB, A7 =5 5 1 OFEH» 5L
B L7270V T XA, 2L, B 2EETOMHICNAS 7477) 298 L TWb, RKIFSEOBCRIE A v
FI—=2ZBLTAL —RICHEATI L, 74 =Ny 223 LI2X 0 UHBOEY 7 r 272 LT #EK- T
B, FRITEIALY V- AT - FEEEAMT S L LD, —VFOEZEERBL B2 EEIT 2> Tn5b, F
A8 AEENDHIE, WIKI I 2L —F vy —dFTO YLy bO—BE LT, BN MVEHEEREAO R
wFEL. ZORRETATIVELTAML, £ D2 —FITHHEN TV S, RIEFIZ/NBBFHERE~ OB %
HULICAT) & & D IS, 4R Z HWCEAHERLE T A 77) 298 L, TORRMEEIEGEL 72,

F—T—FNANT =R VRAAVYE =T A Y7 WHTNI) AL, FV2F7—TATIFI07

124

