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The authors tuned the processing of linear equations, which is the second most time-consuming process in RSA decryption. As
this process only tests whether the exponent part of equations are odd or even, binary numbers are used. The 64 binary numbers are
stored as 64-bit integers and only the locations of non-zero elements of a sparse binary matrix are stored. The processing of linear
equations in characteristic 2 requires fewer floating-point operations but an enormous amount of integer operation and list-vector
processing.

The list-vector processing consumes almost of all computation time, but can be accelerated by loop unrolling. Hybrid
parallelization with automatic parallelization by compiler at each node and MPI parallelization among nodes is effective for the Earth
Simulator 2 (ES2). The processing of linear equations of dimension 8x10” in characteristic 2 required 130 hours on 4 nodes, and their
parallel speedups were estimated as 3.5 for 4 nodes and 5.8 for 8 nodes. The computing time for linear equations of dimension 2x10°*
(equivalent to RSA-768) was estimated 800 hours on 4 nodes, whict is a performance equivalent to that of a PC cluster with 1,700
CPUs. The computing time for linear equations of dimension 8x10° (equivalent to RSA-898) was estimated as 5,000 hours on 16

nodes.
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1. Introduction processing”, the second step is the processing of linear equations
The RSA cryptosystem is the most important technology in characteristic 2, and the third step is the computation
for using the Internet safely; however; currently used 1,024- of algebraic square roots. In 2011, the second year of our
bit RSA code will not be safe for use in the near future [5]. The project, the authors tuned the processing of linear equations in
RSA cryptosystem is based on the difficulty of the factorization characteristic 2 for decryption software for use on the ES2.
of long digits of a composite number, and the decryption time a
of 1,024-bit RSA code is several tens of years even if the fastest 2. RSA code
supercomputer is used. For a RSA code with certain number of The common key cryptosystem and the public key
bits to be considered safe, its decryption time using the fastest cryptosystem are basic cryptosystems. The common key
algorithm and on the fastest supercomputer must be more than cryptosystem has only one key. It is simple and fast to process,
10 years. but there is a problem to send the key in secret via the internet.
The present world record of RSA decryption, for RSA- The public key cryptosystem has two different keys for the
768 (768 bits, 232 digits) is 1,677 CPU-year [7]. This means encryption and decoding. The key for encryption is opened to
that if only one core in CPU (AMD64 2.2GHz) is used, then the public, and the key for decoding is able to keep in secure,
decryption takes 1,677 years. All reported world records for ~ because it is not necessary to send the decoding key. A set
RSA decryption were achieved by PC clusters; no report has yet of keys for the public key cryptosystem is based on the RSA
been made regarding a vector supercomputer. Therefore, a test code, which is innovated by R. L. Rivest, A. Shamir and L. M.
on a vector supercomputer is necessary for a precise evaluation/ Adlman in 1978. The RSA code uses two long digits prime
discussion of the safety of 1,024-bit RSA cryptography code. numbers P and Q, and a prime number e, then computes n =
The present project intends to obtain some basic information PxQ, F =(P-1)x(Q-1), and D = ¢ (mod F). Numbers n and e
for carrying out RSA decryption on the Earth Simulator 2 (ES2), are used for the key for encryption, and the number D is used
as a representative of vector supercomputer. The decryption for the key for decoding. The safeness of this is based on a

processing consists of three parts: the first step is “sieve result that, for a given long digits number n, the factorization
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Table I Computational complexity of RSA-768 (768 bits, 232 digits).

PC-year Ratio (%)
Exploration of polynomial 20 1
Sieve processing 1500 90
Processing of linear equations 155 9
Algebraic square root 1 0
Others 1 0
Total 1677 100

algorithm of n to P and Q has high computational complexity

and consumes enormous computation time.

3. Decryption of RSA code

The sieve method is a factorization method for a composite
number N which obtains a relationship a’-b’=0 (mod N) for
some a, b. Because natural numbers a and b are constructed
as the products of prime numbers provided by the sieve, the
exponent of each prime number must be an even number.

For a composite number N, we assume X is the nearest
integer to N'" and calculate (X+k)2-N = A,, k=0,1,2.... Then,
we collect A, that can be factorized using only prime numbers
in factor base P. We can factorize N into a product of prime
numbers using a combination of A, whose exponent part is
even. This provides the squared numbers for a’-b*=0 (mod N).

The processing of linear equations in characteristic 2
involves choosing a and b that satisfy a’-b’=0 (mod N). Since
only the exponent part is tested for whether it is even or odd,
we can use 0-1 binary computation. First, we create a matrix A
whose elements are 0 or 1 by modulo operation from the sieved
result, and then apply Gaussian Elimination to A+I, setting U
equal to the result. If one row in the left part of U has all zero
then non-zero columns in the right part of U indicate dependent
rows. For these rows we test whether a’-b’=0 (mod N) can be
satisfied. As the probability of being factored correctly is 50%,
enormous rows having dependent columns must be listed.

Table 1 shows the computational complexity of RSA-768 in
PC-year of AMD64 (2.2GHz).

4. Processing of linear equations in characteristic 2

Because the dimension of the matrix for the decryption of
RSA code is more than 10° and each row has nearly a hundred
non-zero elements, on average, for solving this system of
linear equations, iterative methods are preferred over Gaussian
elimination. Using an iterative method, the least squares solution
of the ATx=0 is computed by the following steps:

(1)Set y, equal to a random 0-1 vectors,

(2)Compute the 0-1 vector b= AA'y,,

(3)Solve the system of linear equations AA"y =b by iterative

method,

(4)x =y -y, is a least squares solution of A"x=0.

The 64-bit integer can store 64 binary (0-1) numbers. The
arrays for x, b, X,, and y can each store 64 binary vectors, and

can be computed at the same time by 64 parallel computation.
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In this study, the block Lanczos method is used as the iterative
method. Binary vectors give an inner product equal to zero with
probability 1/2, which is significant since division by zero in a
simple Lanczos algorithm interrupts the iteration step in which
it occurs. However, in the block Lanczos method with a block
size of 64, a scalar in the simple Lanczos method becomes a
64x64 binary matrix in the processing of linear equations in
characteristic 2, and the computation will not terminate if the
matrix is regular. The 64 systems of linear equations with the
same coefficient matrix are solved by the block Lanczos method;
in this computation 64 solutions are computed simultaneously,
and the iteration count is less than the dimension, N/64. The
computation time of g= AA"p, o=p'q, and q=pa exceeds 99%
in the block Lanczos method calculation, where A and A" are
binary (0-1) sparse matrices whose dimension are more than
10%, p and q each consist of 64 binary (0-1) vectors, and o is a
64x64 binary matrix. The vectors p, q, and w and their arrays
represent 64 binary vectors because a 64-bit integer can store 64
binary numbers.

The matrices and vectors are distributed among the nodes.
To compute w=A"p and g=Aw in multiple nodes, an enormous
amount of communication is needed. Since the vector p and
w are computed in parallel and stored in distributed manner,
the full values of p and w are copied to each node before the
sparse matrix computation. There are eight CPUs in each
node of the ES2 and they have a common memory space.
Each node must store all portion of p and w for the hybrid
parallelization, but each CPU must hold all of p and w for
the pure MPI parallelization. Thus, pure MPI parallelization
requires much more memory than the hybrid parallelization, and
the difference between the memory requirements for the pure
MPI parallelization and the hybrid parallelization is particularly
significant when using many nodes.

The following considerations and facts are used:

4.1.Sparse matrix computation: g=AA’p

The full vector p must be stored in each node, whereas
matrices and other vectors are distributed among nodes.
(1)Hybrid parallelization

Hybrid parallelization is applied to reduce the required
memory. Automatic parallelization by the compiler is applied to
each node, and MPI is used for parallelization among nodes.
(2)Both A and A" are stored

To use long vector computation, matrices A and A" are
stored in different arrays on the ES2. Since the elements of
binary matrices are 0 or 1, the locations of non-zero elements
are stored rather than the values themselves. At each node, the
number of non-zero elements in A and A" set to be the same,
and they are sorted at the beginning of the computation to
construct long vectors on the ES2.
(3)AA" is not computed

The matrix multiplication AA™ is not computed for the large



sparse matrices A and A". To obtain g=AA™p, the computations
w=A"p and q=Aw are performed. Because nodes require the
full value of p and w for this computation, the communications
among nodes is necessary.
(4)Loop unrolling for the list-vector processing

Because the speed of list-vector processing on the ES2
strongly depends on the number of loop unrollings, the 2, 4, 8,

and 16 unrolling by hand coding are tested.

4.2. Inner-product computation: o=p'q

The following method A with loop unrolling is chosen
because, although method B has less computational complexity,
it is not vectorized.

Method A:

The 64 times 64 (64%) inner-products are computed simul-
taneously. Since a 64-bit integer can hold 64 binary numbers,
the result of 64” inner-products is stored in 64 arrays: TH[0]
to TH[63]. The outmost loop k is unrolled by 8, which means
eight parallel executions take place per node. The parallelization
among nodes is done by dividing the dimension N by the num-
ber of nodes.

for (k=0; k<64; k++)

{S=0;
for (i=0; i<N; i++)
{Wk=(P[i]>>k) & [;
S "= Wk*Q[i]; }
TH[k] =S;
}

Method B:

The amount of computation is one eighth of that of method A,
but this method is not vectorized because of the dependency of
WTir]. This method is appropriate for a PC, but not for the ES2.

for (k=0; k<8; k++)

{ for (i=0; i<256; i++) W[i]=0;
for (i=0; i<N; i++) { Bit = 8*k; <-- Main part
ir = (P[i] >> Bit) &255; W[ir] "= Q[i]; }
for (i=0; i<8; i++) {S=0;
for (j=0; j<256; j++)
{is=(G>>1) & 1; S*=is*W[j]; }
TH[k*8+i] =S;
;o

4.3. Multiply-and-add computation: g=pa
Method A:
THIK] stores 64 times 64 (64°) binary numbers for scalar
o, and QJi] stores the result of 64 times 64 vectors. This has
approximately the same performance as method A for the inner-
product computation on the ES2.
for (k=0; k<64; k++)
{ for (i=0; i<N; i++)
{Wk=(P[i]>k) & I;
Qli] "= WK*THIK]; }
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}
Method B:

The amount of computation is one eighth of that of method
A, and this computation can be vectorized. The outmost loop
j is unrolled by 8, and then 8 times 256 W[i] are computed
simultaneously. This means eight parallel executions take place
per node. The parallelization among nodes is done by dividing
the dimension N.
for (j=0; j<8; j++)
{i8=7%8;
for (i=0; i<256; i++)
{k=0; id=1i; S=0;
while (id) { S "= (id & 1)*TH[k+j8];
id =id >>1; k++; }
Wil =S; }
for (i=0; i<N; i++)
{ Qli] "= W[(P[i] >> j8) & 255]; }

<-- Main part

5 Performance of the processing of linear equations
in characteristic 2
Figure 1 shows the performance of a transposed binary sparse
matrix vector multiplication w=A"p on one node of the ES2.
The length of vector is sufficiently long but low performance

is observed compared to having continuous memory access
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Fig. 1 Performance of binary sparse matrix multiplication w=A"p on
one node.
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Fig. 2 Performance of inner-product a=p'q on one node.
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because the use of a list-vector. The vector operation ratio
exceeds 99%. The performance of a matrix vector multiplication
q=Aw is nearly equal to that of w=A"p.

Figure 2 shows the performance of an inner-product a=p'q
on one node of the ES2. A computational complexity of
method B is assumed to be the same as that of method A. The
real operation cost of method B is 1/8 times that of method A;
however, method B has very poor performance because of the
lack of vector computation. The vector operation ratio of the
method A exceeds 99%.
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Fig. 3 Performance of multiply-and-add g=pa on one node.

Figure 3 shows the performance of a multiply-and-add
g=pa on one node of the ES2. The computational complexity
of method B is assumed to be the same as that of method A. In
this case, method B can be vectorized, after which it has a high
performance value. The vector operation ratios of both methods
exceed 99%.

Figure 4 shows a potential size problem when processing
of the linear equations in characteristic 2. In the case of 20
nodes (160 CPUs) of the ES2, the dimension size of the hybrid
parallelization is twice that of the pure MPI parallelization.

Figure 5 shows the computation time of processing of linear
equations in characteristic 2 whose dimension is 8x10". The
computation required 130 hours on 4 nodes of the ES2. The
iteration count does not depend on the number of nodes. The
computation time shown for 4 nodes is real measurement,
whereas the values for 1, 2, 3 nodes are calculated by
multiplying 20 the computation time for 1/20 of the total
required iterations. The case of 5 to 10 nodes are estimated
based on the other results and the communication cost among
nodes. The dimension 8x10” was selected because it is the
largest problem size that can be stored in the memory on one
node of the ES2.

Figure 6 shows the speedups of the processing of linear
equations in characteristic 2 whose dimension is 8x10” based on

the result shown in Figure 5. The speedup is estimated to be 3.5

18 on 4 nodes and 5.8 on 8 nodes of the ES2. Herein, speedup of
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an ES2 computation is defined as the time measured for a single
node divided by the time measured for multiple nodes.

Figure 7 shows the estimation of computation time for the
processing of linear equations in characteristic 2 on 4 nodes
of the ES2. As the iteration count is proportional to the square
of the dimension, an estimation of the iteration counts is
calculated for measurement for dimensions of 2x10” to 8x10”.
An estimation of the computation time is calculated from the
measurement of 1,000 iterations.

The computation time of the processing of linear equations
in characteristic 2 whose dimension is 2x10° is estimated to be
800 hours on 4 nodes of the ES2. Four nodes of the ES2 are
equivalent to 1,700 (AMD64 2.2GHz) CPUs, based on that
the present world record RSA-768 is 150 CPU-year (AMD64
2.2GHz).

6. Summary
The authors tuned the processing of the linear equations

in characteristic 2 in the RSA decryption processing. The

following basic information on the ES2 were obtained:

1) This portion of the decryption processing is more than 99%
vectorized, and has less floating-point operations. The list-
vector processing consumes almost of all computation
time and has accelerated by loop unrolling. The maximum
improvement obtained by loop unrolling is 4.8-fold in the
case of the multiply-and-add operation (q=pa.) .

2) Binary sparse matrices computation and multiply-and-add
computation (q=pa) have sufficient performance; however,
the inner-product computation (0=p'q) does not realized a
good speedup relative to scalar performance because the
faster method (method B) was not applicable.

3) Hybrid parallelization with automatic parallelization by
compiler on one node and MPI parallelization among nodes
is effective for the ES2.

4) The processing of the linear equations in characteristic 2
whose dimension is 8x10’ requires 130 hours on 4 nodes of
the ES2. The speedup of the processing of linear equations in
characteristic 2 whose dimension is 8x10 is estimated to be
3.5 on 4 nodes and 5.8 on 8 nodes of the ES2.

5) The computation time of the processing of linear equations
in characteristic 2 whose dimension is 2x10% (equivalent to
RSA-768) is estimated 800 hours on 4 nodes of the ES2.
This is equivalent to 1,700 (AMD64 2.2GHz) CPUs. The
computation time of the processing of linear equations in
characteristic 2 whose dimension is 8x10° (equivalent to
RSA-898) is estimated 5,000 hours (7 months) on 16 nodes
of the ES2.
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