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1. Introduction
The RSA cryptosystem, which was created by R. L. Rivest, 

A. Shamir, and L. M. Adleman in 1978, is the most important 
technology for using the Internet safely; however, the currently 
used 1,024-bit RSA code (RSA-1024, 309 digits) will not be 
safe in the near future. The RSA cryptosystem is based on the 
difficulty of the factorization of large composite numbers, and 
the decryption time of 1,024-bit RSA code is several years 
even on the fastest supercomputer. For an RSA code with some 
number of bits to be considered safe, the decryption time with 
the fastest algorithm and on the fastest supercomputer must be 
on the order of years. The safeness of this standard is based on 
a result that, for a given number n, the factorization of n into P 
and Q has a high computational complexity and consumes an 
enormous amount of computation time.

The present world record for RSA decryption for RSA-768 
(768 bits, 232 digits)[10] is 1,677 CPU-years. This means that if 
one core in a CPU (AMD64 2.2 GHz) is used, then decryption 
takes 1,677 years. All reported RSA decryption world records 
were achieved on PC clusters and there has not yet been a report 
regarding vector supercomputers.

The aim of the our project was to obtain basic information on 
processing RSA decryption based on the general number field 
sieve (GNFS) method for the Earth Simulator 2 (ES2), which 

is a vector supercomputer. The decryption processing consists 
of three parts; the first step is sieve processing, the second step 
is the processing of linear equations in characteristic 2, and the 
third step is the computation of algebraic square roots. In 2012, 
the last year of our project, the authors tuned the computation of 
algebraic square roots for decryption software implemented on 
the ES2, and evaluated/discussed the safety of 1,024-bit RSA 
cryptography code.

2. Decryption of RSA cryptography code
The RSA algorithm uses two many-digit prime numbers 

P and Q, and another prime number e. First it computes N = 
P×Q, F =(P-1)×(Q-1), and D = e-1 (mod F). N and e are used as 
the encryption key, and D is used as the decryption key. The 
encryption key is available to the public, but the decryption key 
must be kept secure. This is possible because the decryption key 
is not necessary for encoding a secure message.

To decrypt an RSA encoded message, it is necessary to 
factor a composite number N into two prime numbers. The sieve 
method is the most effective factorization algorithm. It is said 
that multiple polynomial quadratic sieve (MPQS) factorization 
is the fastest method for the factorization of numbers with fewer 
than 100 digits and that GNFS is fastest for the factorization of 
numbers with more than 100 digits [6][7][9]. In the case of the 
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RSA-768 world record, the factorization was carried out using 
a linear function and a sixth-order polynomial in the GNFS 
method.

The procedure of GNFS is as follows:

(1) Exploration of polynomials f(x) and g(x):
Set

f(x) = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g,
g(x) = Ax + B.

Some integer M satisfies the following equations:
f(M) ≡ 0 (mod N),  g(M) ≡ 0 (mod N).

Choose integer coefficients a, b, …, g, A, and B such that 
they are as small as possible in absolute value. The integer 
M is used instead of g(x) in the classical GNFS method [7]. 
In that case, the integer M should be as possible as small. 
As the computation time to explore for good polynomials is 
variable, we omitted this computation time from our evaluation/
discussion.

(2) Sieve method (choosing prime numbers and a prime ideal 
base)
For factoring primes in a base, a sieve method is used for 

fast computation instead of the modulo operation. In the sieve 
processing, the base used for factoring f(x) and g(x) is chosen. 
The base for g(x) consists of all prime numbers less than a 
specified value and -1, and the base of f(x) consists of almost 
half of the prime numbers less than a specified value, which 
satisfy 

f(x) = (αx – β) × v(x) (mod P)
for some integers α and β, and for some linear function v(x). For 
the sieved data sθ+t, the factored polynomial norms for f(x) and 
g(x) are defined as follows:

Nf(-t/s) = |at6 – bst5 + cs2t4 – ds3t3 + es4t2 – fs5t + gs6|,
Ng(-t/s) = At – Bs.
The value s must be a positive integer and t must be a 

coprime integer; s and t are chosen in order to be able to 
factorize these equations with the prime numbers in the ideal 
base. The number of chosen data is greater than the sum of the 
number of elements in both bases.

(3) Processing of linear equations in characteristic 2
First we make a matrix H whose elements are 0 or 1 by 

modulo operation from the sieved results, which are derived 
from the factorization of N by the bases Nf(-t/s) and Ng(-t/s). 
For a polynomial f(x), some quadratic residues besides the 
already used sθ+t are added[7]. If the number of data is n and 
the sum of the number of elements in the bases and the number 
of quadratic residues is m, then n must be greater than m (n>m). 
Because a matrix H in characteristic 2 is m×n (m<n), the system 
of linear equations Hx=0 has non-zero (least square) solutions. 
The block Lanczos method is applied to obtain some of these 
solutions.

(4) Solution of the algebraic square roots module a polynomial 
f(x)
There exists the following polynomial H(θ) and integer K 

satisfying the following equations:
H(θ)2 ≡ Π(sθ+t) (mod f(θ)) : modulo a polynomial,
K2 ≡ Π(sθ+t) (mod g(θ)) : modulo a linear function.
The s and t were computed from some of solutions of the 

system of linear equations in characteristic 2. Integer K, which 
is modulo a linear function, is directly computed; however, 
H(θ), the square of which is modulo a polynomial, exists but is 
not directly computed from the processing of linear equations in 
characteristic 2. We compute the algebraic square root H(θ) by 
computing the polynomial Π(sθ+t) (mod f(θ)). 

(5) Factorization of N by constructing a2-b2=0 (mod N)
Set a=K (mod N) and b=H(M) (mod N). If P equals 

GCD(a+b,N) and Q equals GCD(|a-b|,N), then N equals P×Q. 
This factors N; however, P and Q are 1 and N with probability 
1/2[7]. Steps (4) and (5) are repeated until P and Q are not 1 and 
N.

The computational complexity of decrypting RSA-768 
code using the GNFS method in PC-years of an AMD64 
(2.2 GHz) is shown in Table 1. The size of matrix H is 
192,795,550×192,796,550[10].

3. Computation of algebraic square roots by GNFS
For computing algebraic square roots, an application of the 

Chinese remainder theorem[7] and solving a system of non-
linear equations with multiple-precision numbers are available. 
The Chinese remainder theorem is currently used for the 
decryption of RAS code[10]. This method requires relatively 
few bits but many conditional-branch operations. This is not 
suitable for a vector machine, such as the ES2. Therefore, we 
decided to use the solving of a system of non-linear equations. 
The procedure for finding algebraic square roots using non-
linear equations by the GNFS method is as follows:
Set

G(θ) = Π(sθ+t) (mod f(θ)).
Find a polynomial H(θ) which satisfies

H(θ)2 ≡ G(θ) (mod f(θ)).
If f(θ) is sixth degree, then G(θ) and H(θ) are fifth degree:

G(θ) = g0θ
5 + g1θ

4 + g2θ
3 + g3θ

2 + g4θ + g5,

Table 1  Computational complexity of RSA-768 (768 bits, 232 digits).

PC-year Ratio(%)
Exploration of polynomials 20 1

Sieve Processing 1500 90
Processing of Linear equations 155 9

Algebraic square roots 1 0
Other 1 0
Total 1677 100

Note: One PC-year means that one core of an AMD64 (2.2 GHz) spends 
one year.
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H(θ) = x0θ
5 + x1θ

4 + x2θ
3 + x3θ

2 + x4θ + x5.
The square of H(θ) expressed module f(θ) is as follows:

H(θ)2 ≡ h0(x)θ5 + h1(x)θ4 + h2(x)θ3 + h3(x)θ2 + h4(x)θ + h5(x) 
(mod f(θ))
where x=(x0,x1,…,x5)

T.
For H(θ)2 ≡ G(θ) (mod f(θ)) to hold, hj(x), which is a second-
degree polynomial of x, must satisfy the following conditions:

hj(x) – gj = 0,  j=0,1,…,5.
The integer solution of this system of non-linear equations is an 
algebraic square root H(θ). To solve this system, we used the 
following Newton iteration procedure:

J(x(k))Δx = h(x(k)) – g,
x(k+1) = x(k) – Δx,

where h(x)=(h0(x),h1(x),…,h5(x))T and g=(g0,g1,…,g5)
T. Δx is the 

increment of x. J(x) is the Jacobian matrix of h(x), expressed as 
follows:

 .

In this procedure, an acceleration of basic arithmetic 
operations for more than 1011 digits is necessary because the 
coefficients of the second-degree polynomial hj(x) and solution 
xj have more than 1011 digits.

4. Vectorization for the ES2
To compute algebraic square roots, it is necessary to use 

basic arithmetic operations for multiple-precision numbers 
of more than 1011 digits, especially for the acceleration of 
the multiplication operation. On the ES2, we accelerated the 
multiplication operation for multiple-precision numbers by 
using vector processing.

(a) Each element stores a 32-bit number, and one number in 
the procedure is expressed by a large number of elements.

(b) All arithmetic operations are 64- or 32-bit integer 
arithmetic operations.

(c) The multiplication operations for multiple-precision 
numbers are constructed based on the integer fast module 
transformation (integer FMT)[3][4].

(d) To utilize bits more effectively, one convolution based on 
the Chinese remainder theorem is applied for each four 
multiplication operations.

(e) The computational result is carried for each element (32 
bits).

The step for integer FMT has large computational 
complexity; however, this step is computed in a short time by 

vector processing on the ES2. The processing of “carry” has 
a data dependency in that the result of the lower part affects 
the computation of the higher part, making it difficult to 
apply vector processing. We applied the following method for 
vectorization on the ES2.

(e1) All elements n are divided into L groups (n=M×L) 
because of the enormous number of elements to be 
carried.

(e2) One additional element is added to each group, and thus 
a multiple-precision number is expressed by (M+1)×L 
elements.

(e3) The computation order for carrying was changed so as 
to be computed in parallel for each group.

(e4) The additional element for the final solution x is 
eliminated by the normalization.

The following program is the program used on conventional 
computers for multiple-precision (M×L×32 bits) addition with 
carrying. The lower part is stored in the array with the smaller 
index value in ascending order.

Cover = 0;
for (i=0; i<n i++) {

Apval  =  A[i] + Cover;
Cover  =  (Apval < A[i]);
C[i]  =  Apval + B[i];
Cover  +=  (C[i] < Apval);

}
The next program is that on the ES2. 

Cover[0] = 0;
#pragma cdir nodep(A,B,C,Cover) on_adb(Cover)

for (i=0; i<L-1; i++)
{ Cover[i+1] = A[i][M] + B[i][M]; }

for (j = 0; j<M; j++) {
#pragma cdir nodep(A,B,C,Cover) on_adb(Cover)

for (i=0; i<L i++) {
Apval  =  A[i][j] + Cover[i];
Cover[i]  =  (Apval < A[i][j]);
C[i][j]  =  Apval + B[i][j];
Cover[i]  +=  (C[i][j] < Apval);

}  }
#pragma cdir nodep(Cover)

for (i=0; i<L; i++)
{ C[i][M] = Cover[i]; }

The unsigned int type is used for the variables and arrays 
for the carrying of the final result of multiple-precision 
multiplications because results are stored as 32-bit integers. The 
unsigned long long int type, 64-bit integer, is used for other 
addition operations without carrying. The sign and exponent 
part are stored in other variables separately. This method may 
introduce discontinuous accessing of the arrays A, B, and C 
in the innermost loop, and thus adjustment of the array size is 
necessary to avoid accessing different memory banks. For only 
the final solution x, which is derived by the Newton iteration 
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process, a process to eliminate C[i][M] is added.
“#pragma” is the directive statement for vectorization for the 

ES2. “nodep” means that they have no data dependency and can 
be used in vector processing. “nodep” was necessary for array C. 
“on adb” means to use the special cache on the ES2 for vector 
processing. It gave about a 15% computation time reduction.

5. Size and features of RSA decryption on the ES2
A comparison of the decryption of RSA code using GNFS on 

PC clusters and a vector machine is shown in Table 2.
Sieve processing can be parallelized into millions of 

nodes because a problem is divided into many small ranges 
and a small amount of data is collected by a relatively large 
computation. However, as the base becomes large, performance 
decreases because the memory is accessed by a variable stride 
whose length equals a prime number. The processing of linear 
equations in characteristic 2 by the block Lanczos method 
requires many millions of iterations[2], and all data must be 
stored in memory.

The size of each step in the decryption of the RSA code 
by GNFS is shown in Table 3. In this computation, the 
combinations of the linear functions and the polynomials are 
used.

In the sieve processing for a 1,024-bit RSA code, more than 
1010 sievings are necessary for one datum. In this process, mis-
sieved and not-to-be-sieved results are acceptable because the 
sieved result is confirmed by simple computations. However, 
the processing of linear equations in characteristic 2 and the 
computation of algebraic square roots must be computed 
correctly. The size of matrix H is determined from the number 
of sieved data and the number of elements in the base. If the 
solution of a system of linear equations in characteristic 2, 
Hx=0, has non-zero solutions, then the number of sieved data 
should be 1000 more than the number of elements in the base.

6.  Estimation of the resource requirement of RSA 
decryption
An estimation of the resource requirement of decryption 

of an RSA code is shown in Table 4. We use the resource 
requirement as a measure of the intensity of the RSA code. A 
modified method for computing the algebraic square roots is 
used for comparison/estimation.

The sieve processing can be performed on one node of 
the ES2 because the memory requirement is comparatively 
small. For the processing of linear equations in characteristic 
2 and the computation of algebraic square roots, the minimal 

Table 4  Estimation of the resource requirement of the RSA decryption.

RSA-768 RSA-896 RSA-1024

Resource Requirement of 
the ES2

Sieve Processing 2 node-years 60 node-years 2000 node-years
Linear Equation in 
Characteristic 2

800 hours on 4 nodes 8 months on 16 nodes 6 years on 64 nodes

Algebraic Square Roots 3 hours on 1 node 5 hours on 8 nodes 10 hours on 32 nodes

Performance Ratio: One 
Node of ES2/PC (2.2 GHz)

Sieve Processing 700 750 800
Linear Equation in 
Characteristic 2

450 500 550

Algebraic Square Roots 600 650 700

Table 3  Size of decryption of RSA code by GNFS.

RSA-768   
232 digits

RSA-896   
270 digits

RSA-1024   
309 digits

Sieve Processing

Degree of polynomials 6 6 or 7 7 or 8
# in base 2×108 109 5×109

# of sieved data 1017 3×1018 1020

# of collected data 2×108 109 5×109

Linear Equation in Characteristic 2
Matrix size 2×108 109 5×109

# of non-zero elements/row hundreds hundreds hundreds

Algebraic Square Roots
# of multiplications byΠ(sθ+t) 108 5×108 2.5×109

Max # of digits of coefficients 5×109 3×1010 2×1011

Table 2  Comparison of PC clusters and a vector machine for RSA decryption.

Sieve Processing Linear Equation in Characteristic 2 Algebraic Square Roots
PC Clusters In cache Block Lanczos Chinese remainder theorem
Vector Machine In memory Small change Should be modified
Parallelization A great degree of parallelization Much communication Medium communication
Property Prime number stride access Very sparse binary matrix 1011 digits
Operations Integer Integer Integer
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number of nodes is determined by the memory requirements. 
In all three cases, RSA-768, RSA-896, and RSA-1024, the 
sieve processing is the most time-consuming part, and the 
computation of the algebraic square roots makes up is a very 
small part of the decryption. On the ES2, the sieve processing is 
the most accelerated part. The processing of linear equations in 
characteristic 2 has a relatively small acceleration ratio because 
it requires additional computations for vector processing[2]. The 
vector operation ratio (Number of vector operations / Number 
of all operations ×100) on the ES2 was measured as 98.6%, and 
the vectorization ratio (Time of the part where vector operations 
can be executed as normal scalar operations / Time of all parts 
executed as normal scalar operations ×100) was 99.9%. The 
vectorization ratio is an estimation based on that one vector 
operation is 50 times faster than one scalar operation and that 
the average vector length is 200. The vectorization ratios at 
the sieve processing, the processing of linear equations in 
characteristic 2, and the computation of algebraic square roots 
are almost identical, and almost all vector operations in these 
processes are integer operations.

7. Summary
On the ES2, for the decryption of the current RSA code, 

RSA-1024, it is estimated that the sieve processing will 
take 2000 node-years, the processing of linear equations 
in characteristic 2 will take 6 years on 64 nodes, and the 
computation of algebraic square roots will take 10 hours on 32 
nodes. This estimate is based on GNFS, which was used for the 
decryption of RSA-768. The required numbers of nodes and 
computation times vary according to the used values, functions, 
and choice of base. In real use, even given two RSA codes 
having the same bit lengths, the decryption times may differ 
significantly.

The effective performance ratio of scalar supercomputers is 
slightly smaller than that of the ES2; however, the K computer 
will take about one year, and so a supercomputer 100 times 
faster would take only a couple of days for the decryption of 
RSA-1024. If a good method for decryption of the RSA code 
appears, much improvement of computation times will occur.

From these results, the current RSA-1024 (1,024 bits, 
309 digits) should be replaced by RSA-2048 before the 2019 
deadline [8] that was recommended for the 2010 problem.

Almost all computations of the decryption of RSA code 
are integer operations, and meeting decryption challenges was 
attempted by using scalar computers. To create software to use 
on the ES2 required much modification of the software for scalar 
machines. However, the resulting software worked effectively 
and the ES2 was shown to be suitable for the decryption of RSA 
code, which has no floating-point number operations.
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1024ビット RSA暗号の強度推定
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インターネットを安全に使ううえで欠かせない技術である RSA暗号には桁数の多い合成数の因数分解の困難性が利用
されており、その安全性はスーパーコンピュータを数年使用しても解読されないという仮定のもとで成り立っている。
本プロジェクトでは、RSA暗号の安全性の検証のため、ベクトル方式のスーパーコンピュータである地球シミュレータ
(ES2)において RSA暗号の解読実験を行い、現在使われている 1024ビットの RSA暗号（RSA-1024, 10進 309桁）の強
度推定を行う。一般的な RSA暗号解読は、ふるい処理、標数 2（0-1データ）の線形計算、代数的平方根の計算の 3段
階からなり、初年度はふるい処理の高速化、2年目は標数 2の線形計算の高速化を行い、最終年度である３年目は「代
数的平方根の計算」を並列ベクトル化し、ES2においてRSA-1024を解読するのに必要な資源量（メモリサイズ＆演算時間）
を推定した。
代数的平方根の計算には中国剰余定理 Chinese Remainder Theoremを応用した方法と多数桁の連立非線形方程式を解く

方法がある。中国剰余定理を応用した方法は比較的短い桁数で計算できる反面、判定処理が多発するため、ベクトル計
算機ではベクトル化が困難である。そこで、多数桁の数を係数とする連立非線形方程式を作成し、ニュートン法を用い
て数値解を求める方式を採用した。必要な整数解をニュートン法で求めるには、異なる値に収束する初期値の選定と整
数解以外の除去が必要になる。6次式で係数が 10進 50億桁の場合、初期値の探索を 1万桁で行い、整数解を求めるの
に平均 3個の解が必要である。1個の整数解での暗号解読の成功率は 50%なので、平均で 6回の解の計算が必要である。
なお、初期値探索の時間は解の計算時間の 1%以下である
ニュートン法に使用する多数桁の数は一要素（32ビット）に 2進 32桁を詰めて表現した。ES2は 64ビット整数の剰

余演算が高速であり、すべての計算は整数演算（int64,int32）を使用し、多数桁の数の乗算には整数 FMT（高速剰余変換）
を使用してベクトル化した。乗算結果の有効桁数を増やすために、4回の乗算結果を中国剰余定理で重ね合わせた。計
算結果の桁上げ処理にはデータ依存性があるため、要素数 nを L要素ごとにM個のブロックに分割し（n=M× L）、各
Mに 1要素追加した (M+1)× L要素として表現し、桁上げのデータ依存性を L要素のブロック内で留める。複数のブロッ
クで並列化することによって、代数的平方根の計算は ES2で高速にベクトル処理できる。

RSA-768の解読では、代数的平方根の計算は 50億桁の係数を持つ 6次多項式、RSA-1024の解読では 2000億桁の係
数を持つ 7～ 8次式の多項式と推定できる。代数的平方根の計算時間は、RSA-768では ES2の 1ノードで 3時間、RSA-
1024では 32ノードで 10時間と推定した。RSA暗号の解読時間の推定は、RSA-768ではふるい処理が 2ノード・年、標
数 2の線形計算が 4ノードで 800時間、代数的平方根が 1ノードで 3時間である。RSA-1024では、ふるい処理が 2000ノー
ド・年、標数 2の線形計算が 64ノードで 6年、代数的平方根が 32ノードで 10時間である。ふるい処理は、1ノードで
も実行可能だが、数百万台規模の並列化も容易である。標数 2の線形計算と代数的平方根の計算は規模により、実行可
能な最低ノード数が決まる。

RSA-1024は、ES2より実行性能が少し劣るとしても、京で 1年程度、100倍高速なスーパーコンピュータなら数日で
解読されると推定できる。より効率の良い解法が考案されれば危険性は増す。現在使用されている RSA-1024は、最終
期限 2019年よりも前に 2048ビットに変更した方が良いと考える。

RSA暗号の解読計算（ふるい処理、標数 2の線形計算、代数的平方根）はすべて整数演算である。ES2で高速に計算
させるためには工夫が必要だが、ベクトル演算率 98.6%、ベクトル化率 99.9%が達成できた。

キーワード : 多数桁数の因数分解 , 篩（ふるい）, 代数的平方根 , GNFS, 整数演算


