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The Gaussian Expansion Method (GEM) for ab initio variational calculations of few-body systems, proposed in 1988, has been
extensively used for a variety of systems involving nuclei, hypernuclei, quarks, and exotic atoms, in the fields of nuclear physics as
well as exotic atomic and molecular physics, in order to obtain bound state and scattering properties. The aim of our project is to
study cold few-body atomic systems using the sophisticated numerical technique through the Gaussian Expansion Method. So far,
three-, four- and five-body codes are available to treat problems in nuclear physics, but thorough optimization is necessary to apply to
weakly-bound cold atomic systems on the Earth Simulator 2 (ES2) supercomputer.

We are interested in treating three-, four-, and five-body systems of cold atoms. Few-body systems involving helium are of great
interest, since some of them are characterized as “weakly-bound systems”, showing a wave function of very diffused nature, and
therefore presenting a challenge in numerical calculations. We have studied the three-body *He molecule and its isotopic species
*He, He, as well as the *He,’Li molecule. We have also carried out optimization of the four-body and five-body codes in order to run
them on ES2.
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1. Introduction the calculation of three-body systems such as the one mentioned

There are many examples of precision numerical calculations above, the interaction is precisely known. In newly developing
which have contributed to examining fundamental laws of  fields of physics, however, there are cases in which interactions
physics and interactions in physical systems. One recent are not well known. Studies of such subjects with precision
example is the determination of the upper limit of the difference (few-body) calculations are also meaningful and important.
between the masses of proton and antiproton, m, and m,, In order to extract reliable new information and constrain the
respectively. The first recommended upper limit of |m,-m,|/m, ambiguity in the interaction being examined, the calculation
by the Particle Data Group listed in Particle Listings 2000 was must be sufficiently rigorous. The Gaussian Expansion Method
5%x107, while could be used for a test of CPT invariance. This was proposed by Kamimura [1] in 1988 to carry out non-
number was extracted from a high-resolution laser experiment adiabatic three-body calculations of muonic molecules and
involving metastable states of antiprotonic helium atom muon-atomic collisions, and since then has been applied to a
(He*+e™+p) through a theoretical analysis of the Coulomb variety of few-body systems involving nuclei, hypernuclei,
three-body system using Gaussian Expansion Method (GEM) quarks, and exotic atoms, in the fields of nuclear physics and
of calculation developed for few-body systems. The ration was exotic atomic and molecular physics [2]. The aim of our project
improved to |m,-m,|/m, <6x10™ as listed in the Particle Listings is here to apply Gaussian Expansion Method to three-, four- and
2002, by a later more extensive experiment and an additional five- body systems of cold atoms.
calculation.

Many important problems in physics can be addressed by 2. Gaussian Expansion Method
solving the Schrodinger equation with high precision for three- 2.1. Three-body wave function
and four-body systems. It is therefore of particular importance to We take all three sets of Jacobi coordinates, X ,=r,—7;, and

develop methods for precision calculations for such problems. In V=7 —(m 7 ytm,yr )/ (my+m;) and cyclically for (¥,, V,) and
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(X5, ¥3), ; being the position vector of the ith particle. The

Hamiltonian of the system is expressed as

h2

2px

H

vz — —\72 + 33 V(). (1)

where u=mm,/(m,+m,) and w,=(m,+m,) my/m,+m,+ms;), m;
being the mass of atom i. V(r;) is the two-body potential as a
function of the interatomic distance r,=[r,—7|.
We calculate the three-body bound-state wave function V5,
which satisfies the Schrodinger equation
(H-E)¥;=0. )
In this work, we consider three spinless atoms and the three-
body wave function is described as a sum of amplitudes of three
arrangement channels ¢=1,2,3:

Y, = 0C=D(E,, 7)) + D (Z,, 5,) + =D (%5,55). (3)

Each amplitude is expanded in terms of the Gaussian basis

functions written in Jacobi coordinates X, and ¥ .:

¢(C)(x yc) - an Ly, Ny, ly ﬁx Ly Ny, ly [d’nx lx(xc)lp Ny, ly(yc)] = ZaAa(ba, (4)
where

¢nlm (T') - lr e vnr Ylm (T) (5)

Yum (@ = Ny rte WY, (7). (6)

Here, N,, and N,, are the normalization constants and the

Gaussian ranges are given by

1 1
Vp = x_,%'xn a* Ay = y_13:3’N =y AN 7L

of the
ground and excited states are determined by the Rayleigh-Ritz

The eigenenergies E and amplitudes AaEAg,m,v,y

variational principle:

(W3|H — E|¥5) =0, @)
which results in a generalized eigenvalue problem:
Z[Haw — ENga/]40) = 0. (8)

a

The matrix elements are written as

Hoqr = (P |H|Pas), Noar = (Po|1|Pg).
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2.2 Four-body wave function
We take two types of Jacobi coordinate sets, K type and H

type. For the K type, X ,=r,—7,, ¥,=Fs—(m,F ,+my’,)/(m,+m,),
and z',=r,—(mF +tm,r ytmyr'y)/(m,+m,+m,) and cyclically

for {X,7,Z; i=2,...,12}. For the H type, X ;=F,—F,, ¥ 5= 4

(mF+m,F,) (m F+mJF) . =
—73, and 7 3= (inj+m:)4 - (;n:+m;)' , and cyclically {¥.y,.z;
i=14,...,18}. The total four-body wave function ‘Y, is obtained

by solving the Schrodinger equation

(H-E)Y,=0
with the Hamiltonian
h? h?
H=-—V2 ——V2 ——V2 + Z V(r
Zu'x Zﬂy ( ’-])

1=i<j

where g1, and . can be calculated in the same way as in the
three-body case. Specifically, in the case of four identical atoms
of mass m, we have u=sm, g =im, and u=;m on the K-type
coordinates, and s, =u,=3m, and g=m on the H-type coordinates.

Y, is expanded in terms of four-body basis functions:

18

W; = Z P (i’c' yc:zc)

c=1

Each of these component functions is expanded in terms
of the Gaussian basis functions associated with the K-type
and H-type Jacobi coordinates, in analogy with the three-body
case. In the similar way, the five-body wave function can be
calculated. The five-body problem has three additional degrees
of freedom and employs 120 component functions, each of

which is associated to one set of 4 Jacobi coordinates.

3. Results

In this work, we have carried out three-body calculations as
well as code tuning of the four- and five-body computer codes.
We have treated three-body systems such as the helium trimer
and its isotope as well as the ones that consist of two helium
atoms and one alkali-metal atom. Such three-body atomic
systems are known to be weakly-bound molecules, and therefore
their calculations become difficult due to the diffuse nature of
their wave function. We have calculated the bound state energy
levels of the *He,, and ‘He,’He, and “He,’Li molecules. Our
finding is that *He;, and ‘He,’He, and *He,’Li have respectively
two, one and two J'=0" bound states. The ‘He, ground and
excited state energy levels are found to be respectively -127.45
mK and -2.4505 mK, while we have found the “He,’He energy
level to be -14.224 mK. The *He,’Li ground and excited state
energy levels are -76.32 mK and -5.51 mK.



On the other hand, we have also carried out tuning of the
four- and five-body computer codes on the Earth Simulator 2
(ES2). Typically, each execution of the five-body code took
more than 200 hours. We have eliminated several wasteful
calculation and vectorized the most expensive part of the
calculation. The vectorization percentage has been raised to
more than 99%, and the average vector length to more than
255. Then, the five-body code necessitates only 2 hours and 50

minutes per each run.
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