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1. Introduction
There are many examples of precision numerical calculations 

which have contributed to examining fundamental laws of 
physics and interactions in physical systems. One recent 
example is the determination of the upper limit of the difference 
between the masses of proton and antiproton, mp and m , 
respectively. The first recommended upper limit of |mp-m |/mp 
by the Particle Data Group listed in Particle Listings 2000 was 
5×10-7, while could be used for a test of CPT invariance. This 
number was extracted from a high-resolution laser experiment 
involving metastable states of antiprotonic helium atom 
(He2++e¯+ ) through a theoretical analysis of the Coulomb 
three-body system using Gaussian Expansion Method (GEM) 
of calculation developed for few-body systems. The ration was 
improved to |mp-m |/mp ≤6×10-8 as listed in the Particle Listings 
2002, by a later more extensive experiment and an additional 
calculation. 

Many important problems in physics can be addressed by 
solving the Schrödinger equation with high precision for three- 
and four-body systems. It is therefore of particular importance to 
develop methods for precision calculations for such problems. In 

the calculation of three-body systems such as the one mentioned 
above, the interaction is precisely known. In newly developing 
fields of physics, however, there are cases in which interactions 
are not well known. Studies of such subjects with precision 
(few-body) calculations are also meaningful and important. 
In order to extract reliable new information and constrain the 
ambiguity in the interaction being examined, the calculation 
must be sufficiently rigorous. The Gaussian Expansion Method 
was proposed by Kamimura [1] in 1988 to carry out non-
adiabatic three-body calculations of muonic molecules and 
muon-atomic collisions, and since then has been applied to a 
variety of few-body systems involving nuclei, hypernuclei, 
quarks, and exotic atoms, in the fields of nuclear physics and 
exotic atomic and molecular physics [2]. The aim of our project 
is here to apply Gaussian Expansion Method to three-, four- and 
five- body systems of cold atoms.

2. Gaussian Expansion Method
2.1. Three-body wave function

We take all three sets of Jacobi coordinates, 1= 2− 3, and 

1= 1−(m2 2+m3 3)/(m2+m3) and cyclically for ( 2, 2) and 
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( 3, 3), i being the position vector of the ith particle. The 
Hamiltonian of the system is expressed as

, (1)

where μx=m1m2/(m1+m2) and μy=(m1+m2) m3/m1+m2+m3), mi 
being the mass of atom i. V(rij) is the two-body potential as a 
function of the interatomic distance rij=| j− i|.

We calculate the three-body bound-state wave function Ψ3, 
which satisfies the Schrödinger equation

. (2)

In this work, we consider three spinless atoms and the three-
body wave function is described as a sum of amplitudes of three 
arrangement channels c=1,2,3:

. (3)

Each amplitude is expanded in terms of the Gaussian basis 
functions written in Jacobi coordinates c and c:

, (4)

where

, (5)

. (6)

Here, Nnl and NNL are the normalization constants and the 
Gaussian ranges are given by

.

The eigenenergies E and amplitudes Aα≡  of the 
ground and excited states are determined by the Rayleigh-Ritz 
variational principle:

, (7)

which results in a generalized eigenvalue problem:

. (8)

The matrix elements are written as

.

2.2 Four-body wave function
We take two types of Jacobi coordinate sets, K type and H 

type. For the K type, 1= 2− 1, 1= 3−(m1 1+m2 2)/(m1+m2), 

and 1= 4−(m1 1+m2 2+m3 3)/(m1+m2+m3) and cyclically 

for { i, i, i; i=2,…,12}. For the H type, 13= 2− 1, 13= 4 

− 3, and 13= (m1+m2)(m3+m4)
(m3r3+m4r4) (m1r1+m2r2)− , and cyclically { i, i, i; 

i=14,…,18}. The total four-body wave function Ψ4 is obtained 

by solving the Schrödinger equation

with the Hamiltonian

,

where μx,μy, and μz can be calculated in the same way as in the 
three-body case. Specifically, in the case of four identical atoms 
of mass m, we have μx= m, μy= m, and μz= m on the K-type 
coordinates, and μx=μy= m, and μz=m on the H-type coordinates. 
Ψ4 is expanded in terms of four-body basis functions:

.

Each of these component functions is expanded in terms 
of the Gaussian basis functions associated with the K-type 
and H-type Jacobi coordinates, in analogy with the three-body 
case. In the similar way, the five-body wave function can be 
calculated. The five-body problem has three additional degrees 
of freedom and employs 120 component functions, each of 
which is associated to one set of 4 Jacobi coordinates.

3. Results
In this work, we have carried out three-body calculations as 

well as code tuning of the four- and five-body computer codes. 
We have treated three-body systems such as the helium trimer 
and its isotope as well as the ones that consist of two helium 
atoms and one alkali-metal atom. Such three-body atomic 
systems are known to be weakly-bound molecules, and therefore 
their calculations become difficult due to the diffuse nature of 
their wave function. We have calculated the bound state energy 
levels of the 4He3, and 4He2

3He, and 4He2
7Li molecules. Our 

finding is that 4He3, and 4He2
3He, and 4He2

7Li have respectively 
two, one and two JΠ=0+ bound states. The 4He3 ground and 
excited state energy levels are found to be respectively -127.45 
mK and -2.4505 mK, while we have found the 4He2

3He energy 
level to be -14.224 mK. The 4He2

7Li ground and excited state 
energy levels are -76.32 mK and -5.51 mK.
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On the other hand, we have also carried out tuning of the 
four- and five-body computer codes on the Earth Simulator 2 
(ES2). Typically, each execution of the five-body code took 
more than 200 hours. We have eliminated several wasteful 
calculation and vectorized the most expensive part of the 
calculation. The vectorization percentage has been raised to 
more than 99%, and the average vector length to more than 
255. Then, the five-body code necessitates only 2 hours and 50 
minutes per each run.
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ガウス関数展開法（Gaussian Expansion Method; GEM）は少数多体系の束縛状態や散乱状態を計算する強力な手法であ
り、主にハイパー核、クォークなどの原子核・素粒子分野およびエキゾチック原子分子の分野で用いられてきた。本プ
ロジェクトの目的はこのガウス関数展開法を用いて冷却原子系を研究することである。これまでは、原子核分野に応用
するための 3体、4体、5体の数値計算プログラムが開発されているが、地球シミュレータ上で冷却原子系に応用するた
めにはさらなる高度化・最適化が必要であった。我々は 4He3、4He2

3Heや 4He2
7Liなどの 3体系の束縛状態計算を行うと

同時に 4体系、5体系の高度化、最適化を行った。
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