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Height of plumes generated during explosive volcanic eruptions is commonly used to estimate the associated eruption intensity
(i.e., Mass Eruption Rate; MER). In order to quantify the relationship between plume height and MER, we performed a parametric
study using a three-dimensional numerical model of volcanic plumes for different MER. The results indicate that the flow pattern in
the lower region of the plume systematically changes with MER. For MERs < 4 x 107 kg/s, the flow in the lower region has a jet-like
structure (the jet-like regime). For MERs > 10° kg/s, the flow shows a fountain-like structure (the fountain-like regime). Within each
of the two flow regimes, the plume height increases as the MER increases, whereas plume heights remain almost constant or even
decrease as MER increases in the transitional regime (4 x 107 kg/s < MERs < 10% kg/s). The distinct relationships between the two
regimes reflect the fact that the efficiency of entrainment of ambient air in the jet-like regime is substantially lower than that in the

fountain-like regime.

Keywords: volcanic eruption, eruption column, turbulent mixing, volcanic hazard

1. Introduction 2. Method and Simulation Inputs
During explosive eruptions, a large amount of a mixture of The simulations were designed to describe the injection of
solid pyroclasts (volcanic ash) and volcanic gases are ejected a mixture of pyroclasts and volcanic gas from a circular vent
from volcanic vent into the atmosphere. The ejected mixture located at 0 km above sea level in a windless atmosphere (Mid-
entrains ambient air and expands because of the heating from latitude atmospheric conditions). Details of the model and
the pyroclasts, becoming buoyant and developing an eruption numerical procedures are described in Suzuki et al. [3]
column. As the mixture rises, its density becomes equal to the In the present analysis, we estimated two characteristic heights
atmospheric density at the so-called neutral buoyancy level of the eruptive plume from the simulation results: the total (or
(NBL), because of the atmosphere stratification. Finally, the maximum) eruption column height (H;) and the maximum
mixture reaches the top of the column exhausting its momentum spreading level (Hyg ). The Hy is defined as the highest level of
and radially spreads around the NBL. an assigned concentration threshold. The Hyg, is defined as the
The relationships between the mass eruption rate (MER) height with the maximum radial injection of the erupted material,
and plume height are commonly derived under the assumptions which was estimated using horizontally and temporally averaged
that the entrainment velocity at the edge of eruption column is profiles of the mass fraction of the erupted material.
approximately proportional to the mean plume velocity along We carried out five simulations of eruption plumes with
the flow axis at each height and its proportionality coefficient, variable MERs: 2.0 x 107, 4.0 x 107, 1.0 x 10%, 2.0 x 10°, and
representing the efficiency of air entrainment, is considered 4.0 x 10® kg/s. The other parameters were kept fixed among
as a constant (e.g., [1]). On the other hand, a recent study by the simulations. Magmatic temperature and water content were
Suzuki and Koyaguchi [2] showed that the flow pattern and assumed to be 1000 K and 2.84 wt%, respectively. The initial
the efficiency of air entrainment in the lower part of eruption density of the ejected material was 7.72 kg/m’, and the exit
column can fundamentally change depending on the MER. velocity was 230 m/s corresponding to the Mach number of 2.0.
In this study, we carried out a set of numerical simulations of
volcanic columns using a 3D fluid dynamic model for different 3. Simulation Results and Geological Implications
MERs in order to clarify whether or not these changes near the Simulation results show two distinct flow regimes develop
vent control the plume heights. near the vent depending on the MER [4].
Figure 1 shows the time-averaged, vertical cross-sections
obtained for the low MER (2.0 x 10" kg/s). The eruption column

41



Annual Report of the Earth Simulator April 2015 - March 2016

develops over 20 km in height. The edge of umbrella cloud
reaches 25-28 km from the central axis of the flow. In the lower
column, the eruption column has an inner core with a high
concentration of the erupted material, which is surrounded by an
outer shear layer having a lower particle concentration (Fig. 1a).
The inner core is progressively eroded by the outer shear layer
with height and disappears at about 5 km. Above this height, the
cloud mixes with ambient air and becomes buoyant. At z > 15
km, the cloud collapses outward and downward.

Figure 2 shows the results for the high MER (4.0 x 10° kg/s).
The flow pattern in the lower column is significantly different
from that for the low MER. The lower column has a fountain-
like structure below 5 km in the high MER case. This fountain-
like structure is characterized by a suspended flow with a high
concentration of the erupted material and density larger than
that of the surrounding ambient. The erupted material is mixed
with the ambient air by the large-scale eddy around the top of
the fountain.

The flow regimes and their plume heights (H; and H,yg, ) are
illustrated as a function of MER in Fig. 3. When the MER is
equal to or larger than 10° kg/s, the flow is clearly in the fountain-
like regime. On the other hand, the case with MER = 2.0 x 10’
kg/s is characterized by jet-like structures. The plume heights,
H; and H,g, against MER have a similar trend. For MER <
4.0 x 10" kg/s (the jet-like regime) and for MER > 10° kg/s (the
fountain-like regime), and plume heights increase as MERs
increase. For 4.0 x 10 kg/s < MER < 10° kg/s (the transitional
regime), however, plume heights remains almost constant or even
decrease as MERs increase.

The present simulations show that the plume heights largely
depend on the flow patterns near the vent. The variations
in plume heights suggest that the efficiency of entrainment
substantially change as the flow pattern changes from the jet-like
regime to the fountain-like regime. The curves in Fig. 3 represent
the H-MER relationships for different efficiencies turbulent
mixing between eruption cloud and ambient air (i.e., entrainment
coefficient). The results indicate that the value of entrainment
coefficient in the jet-like regime is substantially smaller than that
in the fountain-like regime. This implies that the characterization
of mixing efficiency depending on flow regimes is necessary for

a better estimation of MER inferred from plume heights.
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