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We have developed climate models and performed climate studies for better understanding and more reliable projection of the
rapidly changing Arctic. Regarding model development, a simple wetland scheme representing seasonal wetland has been introduced
into a climate model MIROC. This scheme mitigated a summer warm bias found in northern hemisphere land. As for climate
studies, the role of meridional energy transport in the Arctic warming is investigated. The Arctic warming amplification occurred
in the experiment with only positive tropical radiative (CO,) forcing. Further analysis suggested that the atmospheric latent heat
transport played an essential role in creating the Arctic warming amplification. It is hypothesized that the latent heat transport leads
to the Arctic warming with the greenhouse effect of water vapor and clouds enhanced by the moisture transport. We also performed
numerical simulation by using a high-top atmospheric general circulation model AFES and showed the recent Arctic sea-ice
reduction resulted in cold winters in mid-latitude continental regions. A crucial role of the stratosphere in the sea-ice impacts on the

mid-latitudes was shown with additional experiments in which the stratospheric wave-mean interaction was artificially weakened.

Keywords: Arctic, Climate model, Simple wetland scheme, Arctic amplification, Stratosphere-troposphere coupling

1. Introduction an isolated water pool which stores a specific fraction of snow

The Arctic is changing rapidly. Arctic amplification (e.g., [1]) melt water in melting season. This stored water is added to land
as well as summer sea-ice decline and melting of the Greenland water input with a delay of a specific timescale which depends
Ice sheet show that the climate change in the Arctic is faster and on steepness of a land grid. By introducing this simple wetland
more severe than in most of the rest of the world. In addition, scheme, soil water increases throughout all seasons. Especially
recent studies have pointed out that the changes in the Arctic in summer, the increase of soil water is the largest and the
have impacts on the climate outside of the Arctic, for instance, increased evaporation causes 3 °C cooling of land surface
more frequent cold winters in the Eurasian mid-latitudes [2-4]. atmosphere temperature which partly reduces the summer warm
Numerical modeling is key to understand these processes and to bias (Fig. 1). In other seasons, temperature bias does not show a
project possible changes in the future climate. In this article, we

will show some results on numerical model development and

climate studies by using the Earth Simulator.

2. Improvement of MIROC by employing a simple

wetland scheme
The Atmosphere Ocean General Circulation Model MIROC

has a large summer warm bias in northern hemisphere land. On

the other hand, in MIROC, summer evaporation from land is

underestimated since snow melt water immediately runoff and

does not stay on land such as seasonal wetland. In the present

study we introduced a simple wetland scheme into the land

-3 -2 -1 -0.5 0.5 1 2 3

surface module of MIROC and investigated the influence upon Fig. 1 Changes in summer soil water (top panel) and surface air

atmosphere and climate. The simple wetland scheme assumes temperature (bottom panel) due to the simple wetland scheme.
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change for the worse.

3. Role of atmospheric heat transport in the Arctic
warming

A relatively high correlation exists between global and
Arctic mean surface air temperature changes in atmosphere-
ocean general circulation model (AOGCM) simulations. This
correlation indicates a close link of the Arctic to the rest of
the world through energy exchanges. In this study, the role of
meridional energy transport in the Arctic warming is investigated.
The goal of this study is to understand how the Arctic warming
is determined by the change in meridional energy transport and
various feedback processes caused by the transport.

Various processes are evaluated by applying radiative
forcing to low (case TRP) and mid-high latitudes (case EXTRP),
separately, in an AOGCM, MIROC.

The Arctic warming amplification occurred in the experiment
with only positive tropical radiative (CO,) forcing (Fig. 2, case
TRP). At 60 °N, the poleward transport of atmospheric dry-
static energy decreased. This result suggests that the atmospheric
latent heat transport plays an essential role in creating the Arctic
warming amplification although the role of ocean heat transport
must also be examined carefully. On the other hand, the amount
of increase in latent heat transport is smaller than the amount
of decrease in dry static energy transport. It is, therefore,
hypothesized that the latent heat transport leads to the Arctic
warming through not only release of the condensational heating
but also with the greenhouse effect of water vapor and clouds
enhanced by the moisture transport. Further analysis is required

to verify this hypothesis, however.

8.0 | | | | |
{1 —— 2xCO,
1 —-—- EXTRP

60 | —-— TRP -
1 —— EXTRP+TRP

Surface air temperature change (°C)

90S
Fig. 2 Differences in zonally-averaged surface air temperature from the

60S 30S 30N 60N 90N

control experiment.
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4. Impacts of Arctic sea-ice decline on the climate in
mid-latitudes and role of stratosphere-troposphere
coupling
This study [4,5] examines the possible linkage between

the recent Arctic sea-ice decline and the winter climate

in mid-latitudes, especially, the Arctic Oscillation (AO).

Observational analyses reveal that a reduced sea-ice area in

late autumn leads to more negative phase of the AO in winter.

A high-top atmospheric general circulation model (AGCM

for Earth Simulator, AFES version 4.1) is used to simulate

the atmospheric response to observed sea-ice anomalies. The
results from the simulation reveal that the recent Arctic sea-
ice reduction results in cold winters in mid-latitude continental
regions, which are linked to an anomalous circulation pattern
similar to the negative phase of AO with an increased frequency
of large negative AO events by a factor of over two. Associated
with this negative AO phase, cold air advection from the Arctic
to the mid-latitude increases. We found that the stationary

Rossby wave response to the sea-ice reduction in the Barents

Sea region induces this anomalous circulation. We also found

a positive feedback mechanism resulting from the anomalous

meridional circulation that cools the mid-latitudes and warms

the Arctic. This feedback adds an extra heating to the Arctic
air column equivalent to about 60% of the direct surface heat
release from the sea-ice reduction.

The results from this high-top model experiment also suggest

a crucial role of the stratosphere in affecting the tropospheric AO

in winter through stratosphere-troposphere coupling. Although

other recent studies also suggest the stratospheric role, the exact
role remains elusive. With additional experiments in which the

stratospheric wave-mean interaction is artificially weakened,

RS10

s

RS30

U UU@Q

Fz (10°m¥/s?)

Fig. 3 Simulated responses of (a) zonal mean zonal wind at 60 N
and (b) geopotential height at 300 hPa to Arctic sea ice loss.
Contours indicate anomalies. Light and heavy shadings indicate
statistical significance over 95 and 99%, respectively. While in
FREE the mode simulates full wave-mean flow interaction, in
RS10 and RS30 variations are suppressed above 10 and 30 hPa,
respectively.
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it is clearly shown that the tropospheric AO response caused
by the Arctic sea-ice reduction largely disappears (Fig. 3). The
results confirm a crucial role of the stratosphere in the sea-ice
impacts on the mid-latitudes, particularly by interaction between
the stratospheric polar vortex and planetary-scale waves and
by resultant change in the zonal wind in the lower stratosphere.
They also imply that realistic representation of both Arctic
surface boundary conditions and stratospheric processes are
critical for improving predictions of weather and climate in the

mid-latitudes across sub-seasonal to decadal time scales.
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