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We previously developed a Batch-Learning Self-Organizing Map (BLSOM), which can cluster genomic fragment sequences
according to phylotype solely dependent on oligonucleotide composition. BLSOM is suitable for high-performance parallel-
computing and can analyze big data simultaneously. Even though, with the remarkable current increase in genomic sequences from
various organisms, novel tools are needed for comprehensive analyses of all sequence data currently available. We thus developed
Self-Compressing BLSOM (SC-BLSOM) for reduction of computation time. The strategy of SC-BLSOM is to hierarchically
construct BLSOMs according to data class such as phylotype. The first BLSOM was constructed with each of the divided input data
that represent distribution of the data subclass, resulting in remarkable compression of the number of data for a single BLSOM. The
second BLSOM was constructed with a set of the first BLSOM to summarize the class distribution.

In this year, we have developed the above SC-BLSOM for preparing the unavoidable data expansion, in addition to the annual
updating of the standard large-scale BLSOM for all genomic sequences publicized by the International DNA Sequence Databank. We
compared SC-BLSOM with the conventional BLSOM by focusing on bacterial genome sequences. SC-BLSOM could be constructed
faster than the standard BLSOM and cluster the sequences according to phylotype with a higher accuracy, showing the method’s

suitability for efficient knowledge discovery from big sequence data, such as environmental metagenome sequences.

Keywords: Batch-Learning Self-Organizing Map (BLSOM), Self-Compressing BLSOM (SC-BLSOM), Oligonucleotide usage,
Metagenome, Al

1. Introduction the application to metagenome studies of environmental
By focusing on oligonucleotide composition in genomic samples, which should contain genomes from a wide range of
sequences, we previously developed a “batch-learning self- prokaryotes, eukaryotes and viruses, a large scale-BLSOM for
organizing map (BLSOM)”, which allows us to panoramically all species-known genomes must be constructed in advance for
grasp the characteristics of sequences unique to organism mapping of metagenome sequences on the large-scale BLSOM.
species from an ultra-large amount of genomic sequences, We developed the “Self-Compressing BLSOM (SC-
and have so far applied it to gene, genome, and metagenome BLSOM)”, which provides higher-speed computation and
analyses [1-3]. The method provides a strong clustering ability, clustering performance equal to or more than the conventional
with its result easily visible, under which sequences of genome BLSOM [5]. The SC-BLSOM achieves higher speed by
fragments for each species are separated (“self-organized”) with dividing input data into subclasses and structuring BLSOMs
high accuracy, based only on similarities in oligonucleotide in a hierarchical manner. The present report demonstrated the
composition with absolutely no information given on the species effectiveness of the SC-BLSOM by means of comparative
during learning. Furthermore, the algorithm can be optimized studies of its computation time and clustering performance for
for parallel computations, enabling ultra-large-scale analyses almost all prokaryotic genomes currently available.
performed by supercomputers, such as the “Earth Simulator”
[4]. As the BLSOM takes computation time proportional to 2. Material & Method
approximately the cube of the quantity of input data, a large- 2.1 Batch-Learning Self-Organizing Map (BLSOM)
scale BLSOM requires huge amounts of computational time and We previously modified the conventional SOM [6-8] for
resources. With the appearance of next-generation sequencers, genome informatics on the basis of batch-learning SOM to
which has prompted genomic sequence data to grow at an make the learning process and resulting map independent of the
exponential rate, enhancement of computer performance alone order of data input [1,2]. The initial weight vectors were defined
will not suffice, and a higher-speed, larger-scale analysis by PCA instead of random values, and genomic sequences were

strategy is now required. It should be stressed here that, for analyzed as described previously [1-4]. A BLSOM program
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suitable for PC cluster systems and a PC program for mapping
of new sequences on a large-scale BLSOM constructed with
the Earth Simulator can be obtained from our web site (http://
bioinfo.ie.niigata-u.ac.jp/?BLSOM). We have published
applications of BLSOM to a wide variety of topics [9-14].

2.2 Self-Compressing BLSOM (SC-BLSOM)

A conventional BLSOM performs as reflecting characteristics
of input data onto the weight vectors, which are arranged on a
two-dimensional map in the same format as the input data. In
other words, characteristics of the input data are summarized
or compressed into weight vectors. The SC-BLSOM is an
analytical method that fully takes advantage of the BLSOM, and
Fig. 1 shows the algorithm of the SC-BLSOM.

In Step 1, input data are divided according to data
classification criteria. Here we use the genome sequence data of
known prokaryotes for test input data; phylogenetic affiliation
of the known prokaryote is used as the classification criterion:
Division 1-5 in Fig. 1. In Step 2, BLSOM analysis is conducted
on each group of the divided input data, and such BLSOM is
called the first layer BLSOM. The number of BLSOM nodes
(lattice points) created in this step is determined to be half the
number of the divided data. In Step 3, weight vectors obtained
in the first-layer BLSOMs of the divided input data are merged,
according to the next layer classification criterion representing
again phylogenetic affiliation: BLSOM1-1, -2, and -3 and
BLSOM2-1 and -2 in Fig. 1. In Step 4, the BLSOM analyses are
performed using weight vectors summarized according to the
second division criterion, and the BLSOM analyses in this step
are defined as the BLSOM s in the second layer; BLSOM2-1 and
-2 in Fig. 1. Steps 3 and 4 can be repeated for additional layers,
where applicable.

In the SC-BLSOM, more BLSOMs are constructed than
in the conventional BLSOM, but they need much shorter
computation time than the BLSOM for all data input at once,
because the division of data in the first layer BLSOM has
significantly reduced the number of input data for each divided
BLSOM; as above mentioned, BLSOM takes computation
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Fig. I Overview of SC-BLSOM algorithm
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time proportional to approximately the cube of the quantity of
input data. Additionally, smaller number of vectorial data in the
second layer BLSOM than the original amount of data also cut
computation time. Hence, shorter computation time is expected
for the SC-BLSOM compared with the conventional BLSOM.

3. Result & Discussion
3.1 Performance Comparison between SC-BLSOM

and BLSOM
To test the basic performance of SC-BLSOM, its computation

time and clustering performance were measured and compared
with those for the conventional BLSOM. This test used genomic
sequence data obtained by randomly picking out genomic
sequences of 10 Kb from 817 different complete genomes of
prokaryotes and merging them until the sequence length was
one tenth of the original data; BLSOM and SC-BLSOM were
constructed with a degenerated tetranucleotide composition in a
window size of 5 Kb; the frequencies of pairs of complementary
tetranucleotide (e.g., AAAC and GTTT) in each fragment were
summed up and abbreviated as DegeTetra [3]. The number
of lattice points for the conventional BLSOM and for the SC-
BLSOM in two layers were each set to be 50% of the quantity
of input data. Input data for the first layer of SC-BLSOM were
divided into 20 divisions using the number of phyla for the
analyzed organisms as the classification criterion. The number of
input data amounted to 90,998 sequence fragments.

Figure 2 shows the results for the conventional BLSOM and
the second layer of the SC-BLSOM,; Fig. 3 shows the BLSOM
maps created for each phylum in the first layers. Here, the
clustering performance is presented as the percentage of the
lattice points on which only a single phylum was classified on
the obtained map. The SC-BLSOM accomplished a reduced
computation time approximately one sixth of the time required
for the conventional BLSOM, and as for the clustering
performance the SC-BLSOM showed an improvement of about
3% over the conventional BLSOM.

As the SC-BLSOM reduces the map size in proportion to the
decrease of input data, plotting the original input data produces
about four data per one node, resulting in a density twice that
of the conventional BLSOM. It might be expected to degrade
the clustering performance, but the actual performance was
found to be better than that of the conventional BLSOM. We
will next discuss this enhancement. BLSOM is an unsupervised
machine learning, and with no phylogenetic information the
genomic fragments for each species are self-organized with
high accuracy according to phylotype, showing its powerful
performance. However, when considering the large-scale
BLSOM for all species-known genomes for mapping species-
unknown metagenomic sequences, the knowledge of species can
be included during learning in order to enhance the phylotype-
dependent clustering. Actually, the subdivision of sequences

into phylotype categories was a kind of this teaching and thus
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enhanced the clustering performance. Accordingly, the SC- of high clustering performance and effective for large-scale

BLSOM can be described as a method, which is fast, capable genome analyses.

(B)

Fig. 2 SC-BLSOM and BLSOM with DegeTetra in 5-Kb sequences from 817 micr
include sequences from more than one species are indicated in black, those that contain no genomic sequences are indicated in white, and
those containing sequences from a single species are indicated in color as follows: Actinobacteria (m), Alphaproteobacteria (=), Aquificae (m),
Bacteroidetes (m), Betaproteobacteria (), Chlamydiae (m), Chlorobi (m), Chloroflexi (m), Crenarchaeota (m), Cyanobacteria (m), Deinococcus-
Thermus (=), Deltaproteobacteria (=), Epsilonproteobacteria (=), Euryarchaeota (m), Firmicutes (m), Fusobacteria (m), Gammaproteobacteria

(m), Spirochaetes (m), Tenericutes (m), Thermotogae (m).

(A) ©

(K)

(M

7

S e O .

Fig. 3 BLSOM with DegeTetra in 5-Kb sequences from each phylum in the first layers. (A) Actinobacteria, (B) Alphaproteobacteria, (C) Aquificae, (D)
Bacteroidetes, (E) Betaproteobacteria, (F) Chlamydiae, (G) Chlorobi, (H) Chlorofiexi, (I) Crenarchaeota, (J) Cyanobacteria, (K) Deinococcus-
Thermus, (L) Deltaproteobacteria, (M) Epsilonproteobacteria, (N) Euryarchaeota, (O) Firmicutes, (P) Fusobacteria, (Q) Gammaproteobacteria,

(R) Spirochaetes, (S) Tenericutes, (T) Thermotogae.
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4. Conclusion

We have developed a Self-Compressing BLSOM (SC-
BLSOM), which provides high-speed and the higher level of
clustering performance than the conventional BLSOM. This
high-speed is achieved by dividing input data according to
phylogenetic group and structuring the layered BLSOMs. Actual
application to the comparative genome analyses demonstrated
the method’s effectiveness [S]. As the SC-BLSOM performs
the analyses in a layered manner, it does faster as the data are
divided further; i.e., the fewer number of data in the first layer
BLSOM reduces the map size, resulting in shorter computation

time.
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