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Large-scale particle simulation: We have developed dynamics load balancing algorithms for particle simulation method
involving short-range interactions, such as Smoothed Particle Hydrodynamics (SPH), Moving Particle Semi-implicit method
(MPS), and Discrete Element method (DEM). The proposed method utilizing an iterative nonlinear solver and 2D orthogonal grid
domain decomposition, successfully demonstrated the strong and weak parallel scalabilities on the new Earth simulator. Efficient
implementations of communication overlapping method were also examined. The overlapping technique with reordering cell label
using space filling curve could improve the performance. The proposed methods were applied to the SPH-DEM coupled model.
Mantle convection: We have studied evolution processes of mantle convection in massive (ten times the Earth’s mass) super-Earths
with the ACUTEMAN numerical code which was developed in this project. We found that two-layered convection continues for a
very long time unlike the Earth. In addition, we have tried to introduce stress-history dependent viscosity in the ACUTEMAN code to

treat plate motion more precisely.
Keywords: Particle simulation, Dynamic load balancing, Tunami, Core, Mantle Convection, super-Earths, Plate motion

1. Dynamic load balancing (Furuichi & Nishiura) boundaries in the column to be different for each low. We
Complexities arising from granular and fluid system regard the imbalances of the executed time between parallel

are fundamental for dynamics of such as the crystal rich logical processes as the nonlinear residual. The load balancing is
magma, accretion prism and Tsunami sedimentation [1]. The attained by minimizing the residual within the framework of the
numerical modeling with Particle Simulation Methods (PSM) iterative non-linear solver combined with the multi-grid level
involving short-range interactions, such as Smoothed Particle technique for the local relaxation. The performance test of SPH
Hydrodynamics (SPH), Moving Particle Semi-implicit (MPS) code (Fig. 1) shows good parallel (strong and weak) scalabilities

method, and Discrete Element method (DEM) are an effective
1011

approach for understanding such dynamics. A number of

—=®— Water cone test on ES: C64 (225M particles)
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the system size in PSM. Thus, an efficient parallelization of
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the code is important. Moving Lagrangian particle methods,
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however, inherently suffer from the workload imbalance

problem with the simple fixed sub-domains, because particles
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move around during the simulation. A dynamic load balancing

Performance

is a key technique to overcome such limitation.

We have developed a new dynamic load balancing
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algorithms of PSM to handle over the billions of particles 100 102 10°

. . Number of CPUs 10
on the current HPC systems [2]. Our method utilizes flexible Fig. 1 Strong and weak scaling of the parallel performance on the new

orthogonal domain decomposition which allows sub-domain Earth simulator .
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of our proposed method for water mass breaking problem.

For a further optimization, we have applied the overlapping
technique which overlaps communication task with arithmetic
computation. Key point is the division of the data access into
the boundary and inside grid without degrade the performance.
For an efficient implementation of overlapping method, three
types of cell ordering in Fig. 2 were examined. Type 1 is the
native ordering. In Type 2, particles on the boundaries are
divided on the memory array for an efficient memory access for
inner and outer domains. Type 3 utilizes the space-filling curve
for cache-aware data access in inner domain. The performances
with non-overlapping and overlapping methods by using
three types cell ordering methods are shown in Table 1. We
found that reordering scheme was successfully divide the loop

operations into boundary and inner domains without sacrificing

the performance on the Earth Simulator. The ordering with
space filling curve is found to improve the hit ratio of ADB.
As a result, our overlapping method with space filling curve
successfully hided about 84% of the communication cost.

We extend our model to the mesoscale fluid-particle (SPH-
DEM) coupling model which resolves the dynamics over length
scale much larger than particle size. Such systems are ubiquitous
in geodynamics and industry fields. We performed validation
test for dam break test with solid particles [3]. The result shown
in Fig. 3 indicates that the collective particle behavior in the
numerical model approximately coincides with the physical
observations. This comparison confirms the applicability of
our method to the qualitative evaluation of fluid-solid coupled

particle dynamics.
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Fig. 2 Three types of cell ordering examined for efficient overlapping method.
Table 1 Performance of overlapping method with different reordering methods
Type 1+Non-overlap Type 1+Overlap Type 2+Overlap Type 3+Overlap
Arithmetic [ms] 120.0 264.4 123.1 120.9
Communication [ms] 5.5 - - -
Total [ms] 125.5 264.4 123.1 120.9
ADB hit ratio [%] 76.24 61.07 74.24 75.50
t*=1.98
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Fig. 3 Solid-fluid dam-break test with SPH-DEM coupled method and comparison result with experiment.
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2. Mantle dynamics (Miyagoshi & Kameyama)
2.1 Mantle convection in super-Earths

We have studied thermal convection in the mantle of super-
Earths by ACuTE method[4] which was developed in this
project. Following the results until last year[5,6], we have
studied evolution process of mantle convection in massive (ten
times the Earth’s mass) super-Earths in this fiscal year. Figure 4
is one of the numerical simulation results (time development
of potential temperature distribution). We found that unlike the
Earth, two-layered convection continues for a very long time
(in this example, about 8 billion years). This result may be
important to consider the surface environment of massive super-
Earths. The results are published in March, 2017[7].
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Fig. 4 Time development of potential temperature distribution.
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2.2 Mantle convection with stress history, temperature,
and pressure dependent viscosity

We have tried to introduce stress history dependent viscosity
in ACuTEMANT[1] to treat plate dynamics precisely. Figure
5 is an example of numerical simulation results. Narrow plate
boundaries are reproduced. In this simulation, initial viscosity
contrast between the surface and core-mantle boundary
(temperature dependent contrast minus pressure dependent one)
is O(1E3), and the Rayleigh number is O(1E6). The calculation
was stopped with more realistic (Earth-like) parameters. We
consider that the causes are the lack of resolution (in this
calculation, 512 times 512 times 128), and/or the large time
interval in the time integration. In the next fiscal year, for
calculations with more realistic parameters, we plan to perform

larger scale numerical simulations.

W [

Fig. 5 [left] isosurface of temperature (yellow), damage distribution
(surface plane), and temperature distribution (side planes) [right]
damage distribution at the surface.

References

[1] M. Furuichi and D. Nishiura, Geochem. Geophys. Geosyst.,
15 (2014) doi:10.1002/2014GC005281.

[2] M. Furuichi and D. Nishiura, Comput. Phys. Comm. (in

press).

X. Sun, M. Sakai, and Y. Yamada, Journal of Computa-

tional Physics, 248 147-176.

Kameyama M, Kageyama A, and Sato T (2005), J Comput

Phys 206:162-181.

Takehiro Miyagoshi, Chihiro Tachinami, Masanori

Kameyama, and Masaki Ogawa, Astrophys. J. Lett., 780,

L8 (2014)

Takehiro Miyagoshi, Masanori Kameyama, and Masaki

Ogawa, J. Geophys. Res., 120, 1267-1278 (2015)

Takehiro Miyagoshi, Masanori Kameyama, and Masaki

Ogawa, Earth, Planets and Space, 69, 46 (2017)






