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Technology

Future change of tropical cyclones is an important issue for the Asian countries including Japan from the viewpoint of disaster
prevention and water resources. Increases of tropical cyclone intensity with the climate change have been demonstrated by previous
studies. However, there are still large uncertainty in the future projection of tropical cyclones owing to model resolutions and
convective parameterizations. In the present study, downscaling simulations of AGCM-simulated typhoons in the near-future and late
twenty-first century climates have been performed to study the future change of typhoon with the climate change. The simulations of
typhoons were made using a cloud-resolving model with a horizontal resolution of 2 km. Sixty northward-moving typhoons over the
western North Pacific in 25 years of each climate were simulated. Tracks, intensities and structures of the simulated typhoons were
examined. The typhoons in the late twenty-first century climate have larger intensity than those in the near-future climate. The former

typhoons reach higher latitude with larger intensity than the latter typhoons.

Keywords: Typhoon, Climate change, Downscaling simulation, Cloud-resolving model, Meteorological disaster

1. Introduction and Sakakibara, 2002; Tsuboki, 2008[3.,4]). We focused on the
Typhoons occasionally cause a huge disaster owing to their northward-moving typhoons which strongly affect mid-latitude
violent wind and associated heavy rainfall. On the other hand, countries. Typhoon intensities in the mid-latitude, latitude
they are important water resources in East Asia. The future variation of typhoon intensity and latitudes of the life-time
change of typhoon with the climate change is, therefore, a big maximum intensity of typhoon were studied.
issue in these areas including Japan. The main objective of the
present study is future change of northward-moving typhoons 2. Methods
which directly affect the mid-latitude countries. Future changes The initial and boundary conditions of the downscaling
of number, intensity and tracks of typhoon have been studied in experiments were provided by the Meteorological Research
the previous researches. Tsuboki et al. (2015[5]) showed that the Institute (MRI) 20-km-mesh AGCM, MRI-AGCM3.2. AGCM
strongest category of typhoon possibly strikes the main islands experiments were performed based on the Special Report on
of Japan with the intensity of super-typhoon. When does this Emission Scenario (SRES) A1B emission scenario. These
type of typhoon risk appear? How intense will typhoons become experiments include the present, near-future, and late twenty-
in the future warmer climate? The previous studies raise a great first century (future) climate experiments. The advantage and
concern for these problems. On the basis of data analysis of = uniqueness of these experiments are the near-future experimental
typhoon, Kossin et al. (2014[1]) found that the latitude of typhoon data which are important for the present human society. In the
maximum intensity is migrating northward with time. Mei and present study, we perform downscaling experiments of northing
Xie (2016[2]) showed the increase of number of the strongest typhoons of the near-future and future climates in a large
category of typhoon and increase of typhoon intensity. It is domain with a very high resolution of 2 km. The domain is fixed

important problem whether a similar increase of typhoon risk in for the western North Pacific for all experiments. The period of

the mid-latitude will occurs in the near-future and future climates. each climate, number of AGCM typhoons, number of northing
To clarify the increase of typhoon risk in the mid-latitude, typhoon in AGCM and number of experiments in each climate
we performed downscaling simulation experiments of AGCM- are summarized in Table 1.

simulated typhoons in the near-future and future climates
using CReSS (Cloud Resolving Storm Simulator) (Tsuboki
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Table I Summary of periods, numbers of AGCM-typhoons, northing typhoons and cases for downscaling experiments in each climate.

climate Period Number of AGCM-typhoon |Average number  |Northing typhoon |Number of case
Present 1979-2003 593 23.7 85 —

Near-future 2015-2039 541 21.6 76 62 cases

Future 2075-2099 471 18.8 65 61 cases

3. Results

The experimental setting of downscaling simulations using
CReSS is summarized in Table 2. The domain is common
for all experiments and the horizontal resolution is 2 km. The
integration period is 7 days for each typhoon. We selected
northing typhoons of the AGCM-experiments according to
the following two criterion. (1) The life-time minimum central
pressure in the AGCM-experiments is equal to or lower than
970 hPa and its point is located in the area of 120-150 E and 15-
45 N. (2) The central pressure reaches about 970 hPa in the area
of 5-20 N and 115-160 E, and the northernmost point of typhoon
is beyond 20 N.

Table 1 showed that the northing AGCM-typhoons are76 Fig. 1

10N

1158 1208 1;! 130E 1358 140E 145E 150E 155E
Typhoon tracks of near-future climate obtained from the 62

and 65 in the near-future and future climates, respectively. downscaling experiments. The closed circles indicate initial

In contrast, there are 85 typhoons in the present climate. points of typhoons. The red parts of tracks mean that the surface
. . . N

The downscaling experiments were performed for 62 and 61 maximum wind speed is equal or larger than 54 m's”.

typhoons in the near-future and future climates, respectively.
They are sufficient numbers to represent the characteristics of

northing typhoons in each climate.

Figures 1 and 2 show the all tracks of typhoons obtained
in the downscaling experiments in the near-future and future
climates, respectively. The initial points of experiments are
located to the south of 20 N and typhoons move northward.
The red parts of the tracks indicate that typhoon intensity is the
JMA-strongest-category (equal to or greater than 54 m s™). In
comparison of these two figures, it is clear that the red parts of
tracks increase in the mid-latitude in the future climate than the

near-future climate.

i)

A
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Figure 3 shows an example of an intense typhoon passing . o )
Fig. 2 Same as in Fig. 1 but for 61 typhoons of the future climate.

over the Kanto region in the future climate. It is very intense

typhoon with a clear eyewall. The diameter of the region of 06:30Z 27SEP2098 RR, SLP (sfa003_t6716_2098v343t)
. . . . . . 46N1 (o :

15 ms” wind speed is about 15 degree in zonal direction, which PP (TSR el
4Ny :

IR BN
38N
36N

is almost the JMA-largest category of typhoon size. Figure 4

.....

Table 2 Experimental setting of downscaling simulations

Ny | R D s
Domain Western North Pacific (fixed) 82N ik i M
H. resolution 2 km in long.-lat. coordinates ::: K -~ L
H. grid number X:2403,Y: 2051 26N

V. resolution Min. 100m, average 350m BN

V. grid number 83 :::

Integration period (76?)2?(){)0;;?11 typhoon ::: i

Initial and boundary MRIAGSM20km e

12N

condition Kakushin Program 10 2 .

Contouring' o 70 tervar & (myyy v M%®
Land model Thermal cond. model . 41 levels, 6m : Contouring: 850 to 1015 interval 5 (hPa) T
Ocean model One-dim. Model, 41 levels, 40m Fig. 3 A case of intense typhoon of the future climate. The black line is
Radiation RRTM the track of typhoon. The color levels are the rainfall intensity at
Cloud physics Two-moment bulk for cold rain the surface (mm hr™"), black contours are sea level pressure, and
ES node number 128 nodes red contours are the wind speed of 15 and 25 m s™.
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Fig. 4 Latitude variation of the central pressure (left panel) and the

maximum wind speed of the typhoon shown in Fig. 3. The light
blue dots are MRIAGSM20KM and black dots are CReSS.

shows the latitude distribution of the central pressure and the
maximum surface wind speed. The life-time minimum central
pressure is located around 23 N. The central pressure is lower
than 860 hPa until 31 N and the maximum surface wind speed is
larger than 75 m s until 27 N. These indicate that the simulated
typhoon maintained very strong intensity to the mid-latitude.
The downscaling experiments of the present study showed
that the typhoons in the future climate are more intense in the
mid-latitude than those in the near-future climate. This result

suggests the increase of the typhoon risks in the mid-latitude.

4. Concluding Remarks

Since the downscaling experiments were performed using
the cloud-resolving model with a very high resolution of 2 km,
the obtained data are considered to be quantitatively accurate.
The data will be open after a quality check is made. The surface
data are output every 15 minutes. For example, they are used for

a study of storm surge associated with future typhoons.
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