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1. Introduction

The ocean carries about one-third to one half of the total
meridional heat transport. Meridional heat transport in the ocean
is associated to the meridional overturning circulation (MOC).
MOC approximately consists of 3 layers depending on the
formation mechanism and the depth [1]. The upper most layer
(shallow overturning circulation) plays main role in meridional
heat transport.

Shallow overturning circulation is associated to the
subtropical gyre circulation. The western boundary currents
transport warm water poleward. Water transfer heat to the
atmosphere in the mid-latitude, and cooled denser water forms
mode water and moves southward. Previous numerical and
observational studies suggested the importance of mesoscale
eddies in the formation process of mode water (subduction).

On the other hand, submesoscale eddies are focused because
of its importance to the surface bio-geochemical processed
through the strong vertical velocity or the restratification effect.
Some studied the effect submesoscale eddies on the upper ocean
circulation including shallow overturning circulation [2], but the
understanding related to the impact on basin-wide circulation is
still poor. In this project, we evaluate the basin-wide impact of
submesoscale eddies using the high-resolution idealized ocean

models.

2. Model

The governing equations are momentum equation, continuity
equation, advection-dissipation equation and linearized equation
of state under the hydrostatic, Boussinesq, beta-plane and rigid-
lid approximations. Laplacian type horizontal and vertical
viscosity and dissipation are used. Bottom friction is also

included in the momentum equation. Model basin is 6000 km in
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east-west (changed from 3000 km in last year) and 3000 km in
south-north direction and approximately 4100m deep, and has
land area on the north-western corner (Fig. 1). The sine-shaped
bottom topography is introduced for the stability of calculation,
with wavelength of 200 km and height of 600m. The ocean
is forced by zonally homogeneous wind stress [3,4] (Fig. 1)
and heat flux proportional to the difference between SST and
atmospheric temperature. The salinity is set to the constant (and
so the potential density is proportional to the temperature).

We conducted the experiments with horizontal resolution of

1km, 3km, and 10km. Vertical resolution is 5 m at the surface.
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Fig. | Meridional distribution of wind stress (center) and its curl (right),
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and Sverdrup transport on the schematic view of model basin
(left).

3. Results

The numerical experiments were executed as shown in Fig. 2.
All the experiments were finished. We analyzed the effect of
submesoscale eddies by comparing the model result from 1km,
3km and 10km resolution experiments. The last 1000 days of
each experiment are used.

Fig. 3 shows the horizontal distribution of mixed layer depth
(MLD) derived from 1000-day mean field. The MLD and sea
surface temperature if almost uniform in east-west direction
around X=5000 km. This implies that the width of the model
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domain is sufficient to investigate the formation process of

mode waters without the effect of eastern boundary.

(1000 days)
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Fig. 2 Procedure of the experiments. D50, D10, D3 and D1 represent
the experiments with horizontal resolution of 50km, 10km, 3km
and 1km, respectively.
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Fig. 3 Horizontal distribution of mixed layer depth (MLD) derived
from 1000-day mean field. The black contours show sea surface
temperature and red line indicates MLD front. The results of the
horizontal resolution with 1 km, 3 km and 10 km are shown from

top to bottom.
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5. Future works

Comparison among the models with different horizontal
resolution reveal the impact of submesoscale eddies in formation
of mode waters. We continue analysis to clarify the physical

process of submesoscale eddies to the formation.
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