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The Mach number at the edge of the boundary layer Me is known to have a great influence on the stability of the laminar boundary
layer. Above Me> 4, the stability of the boundary layer is drastically enhanced as Mach number is increased. Theories of linear
stability, secondary instability, non-linear parabolic stability equation, transient growth are fairly successful in predicting the growth
of disturbances locally or globally. However, there are still gaps between the stability theories and ways to become turbulence.
Direct numerical simulation (DNS) can analyze the Navier-Stokes equations faithfully if initial and condition, boundary condition,
computational mesh and time increment are given properly. In this study, it is aimed to conduct DNSs in which disturbances that
are considered to make boundary layer unstable easily are introduced to the boundary layer, and numerical techniques necessary to

realize such simulation are developed.

Keywords: Hypersonic flow, laminar-turbulent transition, roughness, direct numerical simulation, interface condition

1. Introduction in which disturbances that are considered to make boundary
When a flow encounters a solid object, a boundary layer layer unstable easily are introduced to the boundary layer,
is formed near the solid surface. Although the boundary layer and numerical techniques necessary to realize such simulation
is initially laminar, laminar-turbulent transition takes place at is developed. In this year, a non-conforming characteristic
some downstream. The routes of transition are never single nor interface condition and a numerical simulation of introducing
simple, and multiple routes exist depending on mean flow and streamwise vortices by an array of wedge-shaped roughness
interior and/or exterior disturbances. Underlying instability under Mach 6 are conducted.
mechanism which determines what disturbances are amplified,
sometimes as a result of competition, also differs depending on 2. Numerical Method
the routes. 2.1 Numerical scheme
The Mach number at the edge of the boundary layer Me is The governing equations are the unsteady three-dimensional
known to have a great influence on the stability of the laminar fully compressible Navier-Stokes equations in general
boundary layer. Above Me> 4, the stability of the boundary coordinates (& 7, ¢). The perfect gas law closes the system of
layer is drastically enhanced as Mach number is increased. As equations. Viscosity is evaluated by Sutherland’s formula and a
Mack showed [1], there are higher acoustic instability modes constant Prandtl number of Pr=0.72 is assumed. The equations
with higher frequencies in supersonic or hypersonic boundary are solved using the finite-difference method. Spatial derivatives
layers in addition to the first instability mode corresponding that appear in the metrics, convective and viscous terms are
to Tollmien-Schlichting waves in low-speed flows. The two- evaluated using the sixth-order tridiagonal compact scheme [2].

dimensional second Mack mode dominates in hypersonic Near boundaries, the fourth-order one-sided and classical Padé

boundary layer in contrast to the unstable oblique first mode in schemes are used on the boundaries and at one point internal
low-speed boundary layer flow. to them. Time-dependent solutions to the governing equations

Theories of linear stability, secondary instability, non- are obtained using the third-order explicit Runge-Kutta scheme.
linear parabolic stability equation, transient growth are fairly In addition to the above-mentioned spatial discretization and

successful in predicting the growth of disturbances locally or time integration, a tenth-order implicit filtering [3] is introduced
globally. However, there are still gaps between the stability to suppress numerical instabilities that arise from central
theories and ways to become turbulence. Direct numerical differencing in the compact scheme. The computational program
simulation (DNS) can analyze the Navier-Stokes equations is parallelized by Message Passing Interface (MPI).
faithfully if initial and condition, boundary condition,
computational mesh and time increment are given properly. 2.2 Non-Conforming Interface Condition

In this study, it is aimed at to conduct a numerical simulation In order to represent the array of roughness, a characteristic

158



WERY I 2 L — & AFEHE - Earth Simulator Proposed Research Project —

interface condition is used. While its baseline method is
proposed in [4,5], we extend it for the non-conforming situation
we encounter in this study. In the baseline method, first the
vectors of conservative variables Qg and Q, are evaluated on the
interface of the right (R) and left (L) regions, respectively by

integrating the following equations.

aa_? =(4))| (RHS)|, +(4))| (RHS)|,, (1)
and
0
a_? = (4| (RHS)), +(4))| (RHS)[,. @

Secondary, a unique vector of the conservative variables is

obtained by averaging Qg and Q,, i.e.,

* 1
0 :E(QL—'_QR) (3)
In eqgs.(1,2),
RHS =J(RHS_. +s-RHS))
g -GG o rms, | @
o5 on of
~ . [ 1-sign(4, _
A; =F,, diag 1= sign(4,) PQ;C ©)
and
1+ sign(A,
A = P,, diag &(’) PQ’;C (6)

Here, Py is a 5x5 matrix obtained by partially differentiating
a vector of the conservative variables Q by a vector of the

characteristic variables, i.e.,

OVe aVC (7)
Ai(i=1,...,5) are the characteristic speeds, defined as
M=A=A=u, A, =u+ad, A,=u—-a (8
using the contravariant velocity # defined as
U=gu+gv+iw ©)

and the sound speed 4 scaled by metrics, which is defined as

T=a e +& 4 & (10)

The above discussion assumes the location of mesh points
from both of the regions R and L coincide at the interface.
However, in this study, the mesh points from both of the regions
do not match. In order to cope with this situation, the above
method is extended for the non-conforming case.

The L region first evaluates (RHS), at the mesh points on
the interface. The region receives (RHS)g, which are evaluated
at the mesh points on the interface in the right region. The

(RHS), are interpolated onto the mesh points on the interface
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in the L left region by the Lagrange interpolation. The 4" order
interpolation is used to prevent the deformation of vortices
passing through the interface. Near the pitchwise boundaries, the
order of the interpolation, i.e., the fixed number of donar points
is assured by copying the R region periodically in the pitchwise
direction. In the R region, similar operations are conducted and
the vector of conservative variables is updated.

Secondly, a unique vector of conservative variables is

obtained by averaging O, and O, in the L region, i.e.,

o %(QL +0%) (11)

In the R region, similar operations are conducted and the vector

of conservative variables is updated.

3. Results

Density
m 0.006

I0.001

Fig. 1 Computed density field (Moo=6), Shock waves are generated
from the roughness

Fig. 2 Mesh interface for the array of the wedge-shaped (every 5 grid

lines are drawn in all the directions)

Vorticity Magnitude [PLOT3D]

Fig. 3 Generation of the array of streamwise vortices by the array of the
wedge-shaped roughness
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Numerical computations of disturbance evolution in
hypersonic boundary layers are conducted. The disturbances
are generated by the array of the wedge-shaped roughness [6].
Computational technique necessary for realizing the simulations
are also developed. Non-conforming interface based on the
characteristic interface condition is developed. Evolution of the
array of streamwise vortices is computed for the boundary layer
flow at Mach 6.

4. Fully-Nonlinear Disturbance Analysis
Fully-nonlinear disturbance equation for the streamwise

velocity u is shown.
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Here p is density, u=(u, v, w) is velocity, 7T is temperature, p

is pressure, 4 is viscosity, Re is Reynolds number, M is Mach

[T3R1}

number y is heat ratio, respectively. Overbar is a base

«_ 9

quantity, tilde is fluctuation, subscript “L” is a linter term,

respectively.
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