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It is essential to understand the fundamental processes between melt jet and coolant during a postulated core-disruptive accident of

a sodium-cooled fast reactor. In the present study, jet breakup and droplet formation in immiscible liquid-liquid system were studied

numerically. A lattice Boltzmann two-phase model was modified in framework of multiple-relaxation time (MRT) collision operator

to enhance the numerical stability. This model was applied to the conditions of jet breakup simulations. The present lattice Boltzmann

simulations qualitatively reproduced the characteristic transitions of breakup regimes.
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1. Introduction

In nuclear power plants, the core material might melt
during severe accidents. In such scenario, the melt material
is considered to flow in the coolant as the jet. The interaction
between the melt jet and coolant will very complex. It is
therefore particularly important to estimate and evaluate the
behavior known as jet breakup or fragmentation in the coolant.
It would, however, be very difficult to investigate the breakup
of a melt jet directly in an SFR or performing experiments using
actual materials. Instead, a scoping study of the fundamental
process is an effective approach to understanding the actual
situation. The authors have performed experiments using
the molten metal/water systems [1] and isothermal liquid-
liquid systems [2], [3]. These experiments gave us fruitful
understandings on the fragmentation mechanism of melt jet.
However, the combinations of test fluid pairs for visualization
were limited, and it is difficult to deal with physical properties
(e.g., density or interfacial tension) parametrically in
experiments. Motivation of the present study is to formulate
stable LB two-phase model and to apply the model to jet
breakup conditions. Firstly, we improve the model based on the
MRT collision operator. This model is applied to the conditions
for liquid jet breakup simulations by implementing appropriate

boundary conditions.

2. Numerical method

In general, multiphase lattice Boltzmann model can
be classified into four models, including color-gradient,
pseudopotential, free-energy, and phase-field models. In the
present study, the color-gradient model is adopted because this
model has excellent property for tiny droplets or bubbles [4].

The distribution function is introduced to represent the fluid
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k, where r or b denotes the color (“red” or “blue”), and i is
the lattice velocity direction. The evolution of the distribution

function is expressed by the following lattice Boltzmann

equation:
k k k
fi(x+ci6t't+6t)_fi(x't):‘Q‘i (1)
The collision operator consists of three sub-operators
k K3 ) N
af = (%) [(91) +(af) ] 2

To overcome the numerical instability in the lattice Boltzmann
community, we employ the multiple-relaxation time collision

operator as follows:

(@) = ~MRM(|f¥) - 74eDy) ()

where M, transferring the distribution function from velocity
space to moment space, is the transformation matrix; K is the
relaxation matrix. When K = I (unit matrix), Eq. (3) degrades
into the single-relaxation time (SRT) collision operator. Using
MRT collision operator instead of traditional single-relaxation
time collision operator contributes to enhance the numerical
stability and accuracy even with additional computational cost.
See Ref. [5] for details of our model.

3. Results

Figure 1 depicts a schematic diagram of boundary conditions
for the liquid jet simulations. The conditions are accordance with
our previous experiments [2], [3]. The simulation results are
summarized in the dimensionless flow regime map for liquid-
liquid jet breakup as shown in Fig. 2. Three typical regimes
were successfully reproduced, namely, the varicose regime
(drops generated from the tip of liquid column), the sinuous

regime (liquid column becomes asymmetry), and atomization
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regime (entrainment at jet side distinguishes). The dimensionless

groups appeared in the diagram is Reynolds number (inertia vs

viscous forces) and Ohnesorge number (viscous vs interfacial

forces). Summarizing, the present simulations well reproduced

the flow regime map developed based on the experiments.

As mentioned above, we successfully simulated liquid jet

breakup. However, the present model cannot be applied to

higher Reynolds number, such as melt jet breakup under reactor

conditions. We then are developing the new lattice Boltzmann

model with central moments [6], [7].
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Fig. 1 Boundary conditions for liquid jet breakup.
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Fig. 2 Simulation results in the flow regime map for liquid-liquid jet

breakup.
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