海洋変動における微細現象と大規模循環の相互作用

課題責任者	
升本 順夫	東京大学 大学院理学系研究科
茎老	
^{有有} 什么卡 苦込	海洋西水明交機構、マプリと、シュンニギ
佐々小 央伯	海洋研究開発機構 アプリクージョンクホ
升本 順夫	東京大学 大学院理学系研究科
	海洋研究開発機構 アプリケーションラボ

本課題では、海洋の数 km から数十 km 規模の微細なサブメソスケール現象を再現する全球規模の高解像度海洋シミュ レーションを行い、サブメソスケール現象の時空間変動とそれと異なる規模の中規模渦や大規模循環場とのスケール間 相互作用を明らかにすること、さらに従来とは質的に異なる海洋循環像を示すことを目的としている。平成 29 年度は、 サブメソスケールの微細現象をある程度解像する水平解像度約 3km (1/30 度) と、100km 規模のメソスケール現象を解 像する水平解像度約 10km (1/10 度)の北太平洋域の海洋大循環モデル出力を比較し、冬季に活発なサブメソスケールの 微細現象の分布と、その微細現象が混合層に及ぼす影響を明らかにした。

キーワード:海洋大循環モデル,サブメソスケール,微細現象,混合層

1. 本課題の概要

海洋では、大規模循環場と数十 km から百 km 規模の中 規模渦が熱や物質輸送に重要な役割を担い、全球規模の 地球環境の維持とその変動に多大な影響を及ぼしている ことが知られている。一方、衛星観測による水温、海色 データから、中規模渦よりも微細な数 km から数十 km 規 模の渦や筋状構造を持つサブメソスケール現象が多くの 海域で観測されている。また、理想的な設定の数値計算 を用いた最近の研究では、海洋のサブメソスケール現象 は、物理場に加えて物質循環、生態系にも影響を及ぼす ことが示唆されている。しかし、微細なサブメソスケー ル現象を考慮して、海洋内部を含む循環場を理解するた めの広範囲で高解像度の観測は困難であり、そのデータ は存在しないため、数値計算の手法を用いざるを得ない。 そこで本研究課題では、海洋の微細なサブメソスケール 現象から大規模循環場の幅広い空間スケールの海洋現象 を同時に再現する全球規模の高解像海洋シミュレーショ ンを実施し、サブメソスケール現象の時空間変動、中規 模渦や大規模循環とのスケール間相互作用の研究を行う とともに、膨大なデータから従来とは質的に異なる海洋 循環像を示すことを目的としている。平成 29 年度の成果 として、サブメソスケールの微細現象を解像可能なモデ ルと解像できないモデルの結果を比較し、冬季に活発に なるサブメソスケールの微細現象の分布と、その微細現 象が海洋循環場、特に混合層に及ぼす影響を示した研究 (Sasaki et al. 2017 [1]) を紹介する。

2. 北太平洋域の高解像度海洋シミュレーション

本研究では、北太平洋域を対象領域として海洋大循環 モデル OFES (OGCM for the Earth Simulator; Masumoto et al. 2004 [2], Komori et al. 2005 [3]) をベースとして構築し た2つのモデルを用いる。1 つは、注目する数 km ~数+ km 規模のサブメソスケールの微細現象をほぼ表すことが できる水平解像度約 3km (OFES_NP3)のモデルであり、 もう1つは微細現象を解像することができない水平解像 度約 10km (OFES_NP10)のモデルである。モデル領域は 東経 100 度~西経 70 度、南緯 20 度~北緯 68 度で、最大 水深は 6,000m、鉛直層数は 100 であり、両モデルで共通 とした。

まず始めに、OFES_NP10 で 30 年間の気候値シミュレー ションを実施した後、1979 年から 2003 年までの過去再現 シミュレーションを実施した。OFES_NP3 の過去再現シ ミュレーションは、OFES_NP10 の 2000 年 1 月 1 日の温度、 塩分の出力と静止状態を初期値に、2003 年末までの 4 年 間実施した。これら海洋シミュレーションを駆動する大 気データは、JRA25 再解析データを(Onogi et al. 2007[4]) 使用した。以下では、両モデルによるシミュレーション 結果のうち 2001 年から 2003 年までのデータを用いて、微 細現象の時空間変動と大規模場への影響の比較を行った。

北太平洋域の微細現象とその循環場への影響 3.1 微細現象の分布と混合層への影響

OFES_NP3 と OFES_NP10 の晩冬の相対渦度分布(図1) を比較すると、OFES_NP3 では中規模渦などのメソスケー ル現象に加えて、サブメソスケールの小さな渦や筋状構 造が見られるが、OFES_NP10 ではサブメソスケールの微 細現象はほとんど見られない。OFES_NP3 で見られる活 発なサブメソスケール現象は、黒潮続流と西部太平洋の 北緯 20 度~25 度の亜熱帯反流の流域、さらに東部亜熱 帯モード水が生成される海域の北方(図1の142°-130°W, 30°-42°Nの矩形領域内)と南方の東部亜熱帯域(図1の 150°-126°W, 15°-27°Nの矩形領域内)に分布している。こ れら冬季に活発になる微細現象は、冬季に混合層が深く なるだけでなく、混合層深の勾配が大きく(図2)傾圧性

図1 OFES NP3(左)とOFES NP10(右)の2002年3月1日の日平均海面流速の相対渦度(1e-5 s⁻¹)

図 2 2002 年 3 月の月平均混合層深 (m)。OFES NP3 (左)、OFES NP10 (中)、OFES NP3 から OFES NP10 を差し引いた差(右)。

が強い領域で、混合層内の傾圧不安定で活発になったと 考えられる。

また、晩冬の混合層深の分布を2つのシミュレーショ ン間で比較(図2)すると、月平均値にもかかわらず OFES_NP3では活発な微細現象の影響による微細な構造 を持つ分布が見られる。また、OFES_NP3の混合層深は、 微細現象が活発な黒潮続流域、亜熱帯反流域、そして 東部亜熱帯モード水生成域の北方域と南方域で、OFES_ NP10より数10m 浅く、特に黒潮続流域付近では、50m 以上浅くなっている海域がある。OFES_NP3では、混合 層内の傾圧不安定によって微細現象が活発化する過程で、 位置エネルギーが運動エネルギーへ遷移することによる 再成層化が起こるが、OFES_NP10では微細現象を解像で きないために再成層化が起こらず、混合層深に差が生じ たと考えられる。

3.2 微細現象の季節変動

OFES_NP3 で 晩冬 の 微 細 現象 が 活 発 な 黒 潮 続 流 域(144°-168°E, 30°-42°N) と、不活発な西部 亜 寒帯 域 (158°-178°E, 42°-52°N) に注目して、微細現象の季節変 動とその影響を調べた(図 3)。黒潮続流域での相対渦度 は OFES_NP3 では晩冬に大きく、それに伴い鉛直流も大 きくなる季節変動が見られるが、OFES_NP10 ではそれら の季節変動は大幅に小さくなっていた。また、冬季に深 くなる混合層深は、前節で示した微細構造が生成される 際の混合層の再成層化によって OFES_NP3 の方が OFES_ NP10 より約 50 m浅くなっている。一方、西部亜寒帯域 では、相対渦度と鉛直流の季節変動のシミュレーション 間の違いは小さく、また混合層深の差はむしろ OFES_ NP10 の方がわずかに浅く、黒潮続流域でみられた微細構 造が及ぼす影響はほとんど見られなかった。

4. まとめと考察

海洋の微細現象を再現できる解像度と再現できない解 像度の二つの海洋シミュレーション出力を比較して、冬 季に活発になるサブメソスケールの微細現象の季節変動 とその循環場への影響を調べた。その微細現象は混合層 内で強い鉛直流を伴い、また再成層化で混合層深を浅化 させる。しかし、高緯度の亜寒帯域では、解像度が約 3kmのシミュレーションでさえ、冬季の微細構造はあま り活発ではなかった。サブメソスケールの生成過程の一 つである混合層内の傾圧不安定のスケールは、高緯度ほ ど小さくなるため、高緯度の微細構造を解像するには解 像度が不足していた可能性がある。さらに高い解像度の シミュレーションの実施と解析が今後の課題である。

OFES_NP3 (濃色線)と OFES_NP10 (淡色線)。黒潮続流域 (144°-168°E, 30°-42°N) (左)、西部亜寒帯域 (158°-178°E, 42°-52°N) (右)。

文献

- H. Sasaki, P. Klein, Y. Sasai, B. Qiu, "Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean", Ocean Dynamics, 67(9), 1195– 1216, 2017.
- [2] Y. Masumoto, et al., "A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator)", Journal of Earth Simulator, 1, 35–56, 2004.
- [3] N. Komori, K. Takahashi, K. Komine, T. Motoi, X. Zhang, G. Sagawa, "Description of sea-ice component of coupled ocean-sea-ice model for the Earth Simulator (OIFES)", Journal of Earth Simulator, 4, 31–45, 2005.
- [4] K. Onogi, et al., The jra-25 reanalysis. Journal of the Meteorological Society of Japan, 85(3), 369–432, 2007.

Interactions between Oceanic Fine-scale Phenomena and Large-scale Circulations

Project Representative	
Yukio Masumoto	Graduate School of Science, The University of Tokyo
Authors	
Hideharu Sasaki	Application Laboratory, Japan Agency for Marine-Earth Science and Technology
Yukio Masumoto	Graduate School of Science, The University of Tokyo
	Application Laboratory, Japan Agency for Marine-Earth Science and Technology

In this project, we construct a dataset from a global high-resolution oceanic simulation that well resolves small structures with the scale from several km to several tens km, named by submesoscales. We try to investigate temporal and spatial variations of submesoscale/mesoscale structures and their interactions with larger scale circulations, by analyzing this dataset. In FY2017, we compared the outputs from two North Pacific oceanic simulations at horizontal resolutions of 3 km and 10 km. The comparison highlights ubiquitous submesoscales, which shallow the mixed layer depth through the restratification process, in late winter around the Kuroshio and subtropical countercurrent and in the subtropical and mid-latitude eastern Pacific. Our study also suggests that the simulation at a horizontal resolution finer than 3 km is needed to well reproduce the submesoscales in a high-latitude region.

Keywords: Ocean general circulation model, Kuroshio Extension, Fine-scale structure, Mixed layer

1. Introduction

The oceanic submesoscales with the scale from several to several tens km can be observed by satellite images. However, observations of the clear images are very rare due to contaminations by cloud cover. The resolution of conventional satellite altimeter is about 100km, which is not enough to capture the submesoscales. Currently, there are no observations to capture well the submesoscales in the large area. On the other hand, the recent numerical study suggested non-negligible impacts of the submesoscales on the oceanic fields including biogeochemical tracers. In this project, we construct dataset from global high-resolution oceanic simulations that resolve well the submesoscales and investigate temporal and spatial variations of the submesoscales and their interactions with larger scale circulations. In this report, we highlight ubiquitous submesoscales in late winter and their impacts on the oceanic field in a comparison between two North Pacific simulations at the horizontal resolutions of 3 km and 10 km. [1]

2. North Pacific high-resolution simulations

We compared the outputs from two North Pacific highresolution simulations at the horizontal resolutions of about 3km (OFES_NP3) and 10 km (OFES_NP10) using the OFES (OGCM for the Earth Simulator; Masumoto et al. 2004 [2], Komori et al. 2005 [3]). We conducted the OFES_NT10 hindcast simulation from 1979 to 2003 following its 30-year climatological simulation. The OFES_NP3 hindcast simulation from 2000 to 2003 is conducted, whose initial conditions are temperature and salinity fields from OFES_NP10 on 1 January 2000 without motions.

3. Submesoscales and their impact on oceanic field

A comparison of two OGCM simulations at different horizontal resolutions highlights submesoscale activities and their impacts on the oceanic field. In OFES_NP3, submesoscales such as small eddies and filamentary structures are ubiquitous in late winter around the Kuroshio and subtropical countercurrent and in the subtropical and mid-latitude eastern Pacific (Fig. 1 left). It is possible that these submesoscales are induced by the baroclinic instabilities within the deep mixed layer in late winter. However, in OFES_NP10, the activities of submesoscales are much weaker than in OFES_NP3 (Fig. 1 right), because of its low resolution.

In the regions with rich submesoscales in OFES_NP3, the mixed layer depths in late winter are shallower than those in OFES_NP10 (Fig. 2). The differences are larger than 50 m around the Kuroshio. The distribution of the mixed layer exhibits relatively small structures in OFES_NP3 compared with that in OFES_NP10. In OFES_NP3, potential energy is converted to kinetic energy when submesoscales generate by the baroclinic instabilities within the mixed layer. This process induces a restratification within the mixed layer in OFES_NP3, but this process does not occur in OFES_NP10. This difference possibly makes the differences of mixed layer depths between the two simulations.

Fig. 1 Daily mean relative vorticity (1e-5 s⁻¹) at surface on 1 March 2002 in OFES_NP3 (left) and OFES_NP10 (right).

Fig. 2 Monthly mean mixed layer depth (m) in March 2002 in OFES_NP3 (left) and OFES_NP10 (middle). Right panel is OFES_NP3 minus OFES_NP10.

4. Summary and discussion

A comparison of two North Pacific OGCM simulations at horizontal resolutions of 3 km and 10 km highlights rich submesoscales in late winter and their impacts on the oceanic field. In generation process of the submesoscales, the restratification within the mixed layer induces a shallowing of the mixed layer depth. Even in OFES_NP3, submesoscales are not rich in late winter in a high-latitude region, probably due to a scale of baroclinic instabilities within the mixed layer that is too small to be simulated.

References

- H. Sasaki, P. Klein, Y. Sasai, B. Qiu, "Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean", Ocean Dynamics, 67(9), 1195– 1216, 2017.
- [2] Y. Masumoto, et al., "A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator)", Journal of Earth Simulator, 1, 35–56, 2004.
- [3] N. Komori, K. Takahashi, K. Komine, T. Motoi, X. Zhang, G. Sagawa, "Description of sea-ice component of coupled ocean-sea-ice model for the Earth Simulator (OIFES)", Journal of Earth Simulator, 4, 31–45, 2005.