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Large-scale particle simulation: To understand the stress state in the accretionary prism, a numerical sandbox experiment was
performed with realistic particle sizes. We developed the simulation code of Discrete Element method (DEM) based on the new types
of load balancing algorithms proposed last FY. The parallel scaling test shows good strong, and weak scalabilities up to 2.4 billion
particles on the Earth Simulator. To analyze the stress state inside the granular media, we had performed stress-chain analysis. The
result indicates that essential structure of stress state inside the accretionary prism is three-dimensions rather than two dimensions,
which is assumed by classical geological views. Mantle convection: We have developed stress-history dependent viscosity model
in ACUTEMAN. In the last FY, we showed the case of small viscosity contrast between bottom and top of the mantle thus plate is
relatively soft. In this FY, we calculate the case of hard plate (large viscosity contrast, plate like regime) in which parameters are
Earth-like one. In addition, we performed numerical simulations by changing the planet mass step by step from the Earth class to ten

times the Earth’s mass to study the mantle convection in super-Earths.
Keywords: Particle simulation, Dynamic load balancing, Accretionary prism, Mantle Convection, super-Earths, Plate motion

1. The real-scale numerical sandbox experiment performance due to the load imbalance and communication
(Furuichi & Nishiura) costs by utilizing an iterative dynamic load balancer [3]. The
Understanding the stress state in accretionary prisms that scaling test is shown in Fig. 2. We observe good, weak and

generate great earthquakes and tsunami is one of the grand strong scaling behavior upto 2B particles and 1,936 CPUs in

challenges in scientific exploration projects, such as the the Earth Simulator (the maximum was 2,048 CPUs). With the

Integrated Ocean Drilling Program (IODP). Analog sandbox developed DEM code, a real-size-scale sandbox simulation with

experiments can be the effective approach to deduce the 2.4B particles (100 um particle size and I m x 1 m x 0.02 m

stress state combined with the data from boreholes. However, domain size) was performed using Earth Simulator. The load

laboratory experiments cannot fully explore the 3D stress states imbalance (t_max- t min)/t ave observed around at the time

inside granular media. To overcome this, we performed direct step in Fig. 1 was about 7.4% [4].
3D numerical simulations with the Discrete Element Method Stress chain analysis suggests that the complex lateral stress
(DEM) (Fig. 1). structure is formed after the multiple thrust events (Fig. 3). This

The DEM has been widely accepted as an effective numerical lateral stress structure could be the natural outcome of the thrust
approach for granular problems such as a sandbox experiment. formations in the accretionary prism. We argue such stress sate
For such a problem, it is essential to have many particles for a improves the interpretation of the in-situ stress state from the
qualitative and quantitative understanding of granular dynamics. boreholes. The 2D cross-section view of the sandbox experiment
However, the efficient parallel implementation of DEM is still a has been used to interpret the borehole data, but the 3D view is
challenge [1, 2]. Thus, we developed new DEM codes designed not yet considered well.

for HPC systems to overcome the degradation of parallel
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Fig. 1 Snapshot of sandbox simulation with 1.9B particles.
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Fig. 2 Strong and weak scaling of the parallel performance on the Earth

simulator

Fig. 3 Map view of the stress chain distribution at 40% shortening. The
most compressive principal stress vectors in the stress chains are
denoted by the colored lines. The color shows the angle of vector

against vertical axis.
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Fig. 4 [Lett]

2. Mantle dynamics (Miyagoshi & Kameyama)
2.1 Mantle convection with stress history, temperature,
and pressure dependent viscosity

On the plate on the Earth, there are places where they are
ruptured or not, even if stress of almost the same strength is
applied. To treat this feature correctly, we have developed
stress-history dependent viscosity model in ACWUTEMAN [1] .

In the last FY we showed the case of small viscosity contrast
between bottom and top of the mantle. In that case, plate is
relatively soft, and it does not move rigidly (weak plate regime).
In this fiscal year, we calculate the case of hard plate (large
viscosity contrast, plate like regime) in which parameters are
Earth-like one. Fig. 4 shows an example of numerical simulation
results. In addition to the stress history, the viscosity depends on
temperature and pressure. The lithosphere descends along the
plate boundary formed by strong stress. The plate pieces begin
to be moving rigidly. As plate boundaries are formed, places
with a large viscosity contrast locally arises in the horizontal
plane. It causes the long iteration time and the calculation time
becomes long. This calculation is still on the way, and we

continue the calculation in next fiscal year.

2.2 Mantle convection in super-Earths
We have studied thermal convection in the mantle of super-

Earths by ACuTEman [5]. In this research theme, we already
published three peer-reviewed papers [6-8] by last year in which
the case of massive super-Earths (ten times the Earth’s mass)
is studied. The important results obtained are that the vigor of
hot plumes ascending from the core-mantle boundary becomes
very low, the efficiency of heat transport by thermal convection
becomes low despite of the large Rayleigh number due to
the increase in the planetary radius, and the thickness of the
lithosphere becomes large.

In this fiscal year, in order to investigate the threshold
where these characteristics become prominent, we performed
numerical simulations by changing the planet mass step by step
from the Earth class to ten times. From numerical simulation
results, we found the threshold where the above characteristics
are remarkable. Our results suggest that the Earth-like plate
motion or volcanic activities are expected in the lower mass
planets than the threshold in super-Earths. The paper of the

results is submitted now.

Hot plume isosurface (yellow), temperature distribution (side wall) [Center] The view from the top. The red and green parts show plate

boundaries caused by strong stress. [Right] Isosurface of low temperature which shows the lithosphere (green).
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