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Wind power is expected to play an important role in addressing global warming and to secure national energy independence.

Global Wind Energy Council reported that global cumulative installed wind capacity exceeded 480 GW in 2016 [1], suggesting that

wind power is developing worldwide. Further increase in wind power generation needs additional improvement and development

in wind power technology. One of the promising technology is the Virtual Met Mast (VMM) tool, in which numerical weather

prediction (NWP) models and statistical technique are used for wind resource assessment. The VMM tool is expected to overcome

the constraints associated with minimum 1-year wind measurement campaign, excessive costs, and data quality/availability. The

VMM also would be an alternative technology for offshore wind measurements taking enormous costs. This study aims to validate

the performances of an NWP model with respect to micro-scale wind simulation.

Keywords: wind energy, wind prediction, numerical weather prediction, MSSG

1. Introduction

Current operational wind resource assessment utilizes wind
measurements recorded locally with a minimum duration of 1
year as an input for CFD models. However, wind measurements
have some constraints of their excessive costs and data quality/
availability in some situations. Virtual Met Mast (VMM) tool,
which utilizes numerical weather prediction (NWP) model
and statistical technique for wind resource assessment, is a
promising technology to overcome the above issues. The VMM
also would be expected as an alternative technology for offshore
wind measurements taking enormous costs. This study aims
to validate the performances of an NWP model with respect to

micro-scale wind field simulation.

2. Meteorological simulation with MSSG

We used an ocean-atmosphere coupled nonhydrostatic
model, Multi-Scale Simulator for the Geoenvironment (MSSG)
[2] developed at the Japan Agency for Marine-Earth Science
and Technology (JAMSTEC). The MSSG is aimed at seamless
simulations from global to local scales. The MSSG consists of
an atmosphere component (MSSG-A) and an ocean component
(MSSG-0), and the former was used for our experiments. The
dynamical core of the MSSG-A is based on the nonhydrostatic
equations, and it predicts the three wind components, as well
as air density, pressure and temperature. In this experiment we
followed the previous study [3] with respect to the selection of
the physical schemes such as turbulent diffusion and radiation.
For example, we employed a turbulent diffusion model of the
Mellor-Yamada-Nakanishi-Niino level-2.5 model [4].

In this study, an annual wind field simulation in complex
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terrain is conducted by using the MSSG. The MSSG was
configured with a triple-nesting with the horizontal resolution
at 1000 m, 200 m, and 50 m grid. The nested domains were
96kmx=96km, 19.2kmx19.2km and 4.8kmx4.8km. The MSSG
has 32 vertical layers with a top height of 30 km, and the
lowermost layer is about 30 m for all nested domains.

Initial and boundary conditions were derived from the Meso
Analysis (MANAL) developed by the Japan Meteorological
Agency. The MANAL data has a horizontal resolution of
Skm with 15 pressure levels at 3-h interval. The MANAL
data was assimilated into the two outer nested domains at 3-h
intervals by means of the optimum interpolation method, while
the assimilation was not applied to the most inner domain to
avoid the artificial damping caused by coarse resolution of the
MANAL data.

The model terrain was derived from the 10m DEM data
developed by the Geospatial Information Authority of Japan,
and the land-use data was derived from 100m-mesh developed
by the National Land Numerical Information. The model output
is at 10-min interval (10-min. average).

The simulation period is from January 1 to December 31,
2015. The simulated wind speed and directions were validated
with the measured wind data during the period. Wind farm
developers approved us to use measured wind speed and
direction data under the condition that their name and the site
place would remain hidden. The measurement height is 58.5m
above ground level. Because the wind data are confidential for
the companies, the wind speed (direction) is normalized by

dividing (subtracting) the mean.
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3. Validation of MSSG simulation

The ratio of all available data was about 70%, since the
simulation did not complete as scheduled (Table 1). By
analyzing the available data, we found that MSSG well
simulated the temporal variation of wind speed, as revealed by
the correlation coefficient greater than 0.7 throughout the year.
However, we also found that MSSG overpredicted wind speed
(the relative error for the monthly mean wind speed is up to
31%).

Table 1 Monthly percentage of valid data, correlation coefficient and

relative bias between measurement and MSSG

Year 2015

Month 1 2 3 4 5 6 7 8 9 10 11 12
Percentage of |
available data*| 79.0 | 902 | 909 | 576 | 706 174 | 923 |100.0 | 425 | 903 | 750 | 30.2

Correlation
coefficient™ | 0.80 0.84 0.90 0.86 0.82 0.76 0.78 0.77 0.84 0.88 0.77 084
=]

4. Conclusion and Discussion

In this study, annual wind field simulation was conducted,
in which MSSG of 50m mesh was utilized. We found that the
MSSG generally well simulated the temporal variabilities of
measured wind speed and direction. However, the simulated
wind speed is positively biased throughout the year (up to 31%
in monthly average).

A key to reduce the bias of wind speeds by MSSG colud be

the simulation considering a vertical mixing in the boundary

+ Measurement
- MSSG

N W A o o

Normalized wind speed [-]

o -

e
R""’"‘E;]b'“ 198 | 288 | 305 | 239 | 276 | 239 | 283 | 280 | 310 | 243 | 221 | 184

*Data is availabe in case that both of the modeled and observed data are available.
**Correlation coefficient and relative bias are calculated using the available data.

Figure 1 shows the time series of wind speeds and directions
in March 2015 derived from observations and MSSG. MSSG
well simulated the temporal variability of the observed wind
speed. However It was found that MSSG overpredicted
(underpredicted) the frequency of high (low) winds (Fig. 2).
On the other hand, MSSG generally well simulated the wind
direction as observed, except that MSSG slightly overpredicted
the frequency of the north-northwesterly winds (Fig. 3).
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Fig. 1 Comparisons of measured and simulated timeseries of wind
speed and direction on March, 2015.
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Fig. 2 Annual wind speed frequency distributions obtained from measurements and MSSG simulation.
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Fig. 3 Annual wind rose calculated from measurement and MSSG simulation.
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layer. Surface temperature contribute to develop mixing layer,
thus accurate prediction of this variable may improve the
accuracy of simulated wind speed. The configuration of the
model used in this study adopts a constant evaporation rate for
each land-use type. As another solution, a model parameterized
by using soil moisture is also implemented in MSSG. The latter
model may increase the evaporation, resulting in a reduction
in surface temperature. This may bring about an increased
atmospheric stability and weakening of vertical mixing,
resulting in a reduced low-level wind speed. Although we did
not show in this report, the vertical shear of the modeled wind
speed is less than the observed value. This result also indicates
that the vertical mixing in the boundary layer is predicted too
strong, bringing faster high wind aloft to the near-surface in our
simulation. Besides that, previous study revealed that tuning
the MYNN parameters improved the prediction skill in the low-

level wind speed. These will be explored in future studies.
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