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(a) Spatial variations of estimated focal mechanisms
of shallow very low frequency earthquakes
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(b) Temporal variations of shallow very low frequency
earthquake activities
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To investigate the long-term activity of shallow slow earthquakes along the Nankai Trough, which frequently
occurs in the regions surrounding megathrust rupture zones, we conducted centroid moment tensor (CMT)
inversions of shallow very low frequency earthquakes (shallow VLFEs), including events before offshore
observations. Green’s functions for CMT inversions were evaluated via finite-difference method simulation
using the regional 3D velocity structure model. This 3D model was constructed from the community model of
Japan and local offshore S-wave velocity structures. By using 3D Green’s functions, we obtained accurate and
long-term CMT catalog of shallow VLFE along the Nankai Trough. Our CMT catalog revealed spatiotemporal
characteristics of shallow slow earthquakes along the Nankai Trough.
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1. Introduction

Along the Nankai Trough, where megathrust earthquakes
have repeatedly occurred, seismicity of regular earthquakes on
the plate boundary is very low but slow earthquakes
frequently occur (Obara and Kanto, 2016[1]). Several types of
slow earthquakes, such as low frequency tremor, very low
frequency earthquakes (VLFEs), slow slip events (SSEs) and
coupled phenomena (ETS; episodic tremor and slip), have
been observed. To understand the physical characteristics of
the plate boundary, slow earthquakes have been extensively
investigated in various subduction zones.

Although dense and high-quality onshore seismological
networks were developed in Japan, characteristics of slow
earthquakes are not fully understood. Especially, because
source regions are near the trench, far from onshore seismic
stations, it is difficult to evaluate shallow slow earthquakes
precisely, which occurred at shallower extensions of
megathrust rupture zones. Conventional one-dimensional
(1D) approaches based on onshore seismograms (e.g., Asano
et al., 2008[2]) provide incorrect results, especially for focal
mechanisms and epicenters, due to three-dimensional (3D)
offshore heterogeneous structures. To overcome these
problems, the permanent offshore network of DONET is very
useful (Nakano et al., 2018[3]) but the observation period is
still limited. To understand the long-term activity of slow
earthquakes, we should re-visit long-term onshore seismic
records.

In this report, first, we introduce studies of modeling
subsurface velocity structure, especially accretionary prism
(Takemura, Kubo, et al. 2019[4]), which explained observed
long-period ground motions. By using the constructed model,

centroid moment tensor analysis of shallow VLFE was
conducted (Takemura, Matsuzawa, et al. 2019[5]). According
to the long-term CMT catalog of shallow VLFE, we evaluated
slow earthquake activity along the Nankai Trough.

2. Structural model and method

We used the 3D model of Koketsu et al. (2012)[6]. The
structure within the low-velocity accretionary prism was
constructed from 1D local S-wave velocity structures beneath
DONET stations (gray diamonds in Figure 1) by Tonegawa et
al. (2017)[7]. By interpolating and extrapolating these 1D
structures, we constructed the 3D model of the accretionary
prism along the Nankai Trough.

The finite-difference method simulation of seismic wave
propagation (Furumura and Chen, 2004[8]; Maeda et al.,
2017[9]) for the southeast off Mie earthquake occurred on 1
April 2016 was conducted using the constructed model. Our
model simulation well explained observed long-period ground
motions (Figure 1). Details of model descriptions and
validations were described in Takemura, Kubo, et al.
(2019)[4].

To investigate the long-term activity of shallow slow
earthquake along the Nankai Trough, we conducted centroid
moment tensor (CMT) inversions of shallow VLFEs using
long-term onshore seismograms. The Green’s functions for
CMT inversion were evaluated via finite-difference
simulations using the 3D model of Takemura, Kubo, et al.
(2019)[4]. Details of CMT inversion were described in
Takemura, Matsuzawa, et al. (2019). After CMT inversion,
we obtained centroid location, time, moment magnitude, focal
mechanism and source duration of each shallow VLFE.
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Figure 1. (a) The Map of the target region, (b)(c) simulation results of the southeast off Mie earthquake (a red focal mechanism).
The triangles and diamonds in (a) are F-net and DONET stations, respectively. The blue dashed rectangle in (a) represents the
calculation region. The gray solid and blue dotted lines in (b) and (c) are observed and simulated waveforms, respectively.
Amplitudes of each trace were normalized by the maximum amplitude of 6-component seismograms at each station.

3. Long-term activity of shallow slow earthquakes
along the Nankai Trough

Figure 2 shows the spatiotemporal variation of shallow
VLEFE activity along the Nankai Trough from June 2003 to
May 2018. Almost of obtained CMT solutions were
characterized by a low-angle thrust faulting mechanism
(Figure 2a), suggesting seismic slip on the plate boundary.
Shallow VLFE actively occurred in two regions: (A) off the
Cape Muroto and Kii channel, (C) southeast off the Kii

(a) Spatial variations of estimated focal mechanisms
of shallow very low frequency earthquakes
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Peninsula. Temporal variations of shallow VLFE activities
(Figure 2b) illustrated the episodic occurrence of shallow
VLFEs. During some shallow VLFE episodes, SSEs
simultaneously occurred (Araki et al., 2017[10]; Yokota and
Ishikawa, 2019[11]). Thus, the activity of shallow VLFEs is
important for monitoring slip behavior on the plate boundary.
By comparing the slip-deficit rate on the plate boundary
(Noda et al, 2018[12]) and offshore velocity structure
(Tonegawa et al., 2017[7]), we concluded that shallow VLFE
is activated by decreasing effective strength due to rich pore

(b) Temporal variations of shallow very low frequency
earthquake activities
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Figure 2. Spaciotemporal variations of shallow VLFE activity along the Nankai Trough. The difference in colors of focal
mechanisms and lines represents a difference in segments of shallow VLFE activities. The back open circles in (a) are epicenters
of shallow VLFEs estimated by DONET record (Nakano et al., 2018[3]). Figures were modified from the original figures of

Takemura, Matsuzawa et al. (2019)[5].
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fluid in the regions surrounding strongly locked zones.

4. Summary

By using calculation resources of the Earth Simulator, we
developed the subsurface structure model (Takemura, Kubo,
et al, 2019[4]) and CMT inversion method for offshore
seismic events (Takemura, Matsuzawa, et al, 2019[5]).
According to the obtained CMT catalog of shallow VLFEs
along the Nankai Trough, spatiotemporal activity patterns of
shallow slow earthquakes were illustrated.

Such long-term and detailed activity of shallow slow
earthquakes could be investigated by the combined use of
long-term onshore seismic record and large-scale computer
simulations. Our developments will contribute to
understanding the physical mechanisms of megathrust
earthquakes and warning systems of strong ground motions
and tsunamis.
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